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1 INTRODUCTION

When it comes to dealing with indels, molecular evolution lags
heuristic bioinformatics by decades. Sophisticated alignment
algorithms have been widely known since the 1960s (and in
bioinformatics since 1970), but we are still struggling to
understand the corresponding phylogenetic models. Big ideas
drive change: as we dream of reconstructing ancestral geno-
types, it is ever clearer that indels cannot be ignored. We need to
develop a robust understanding of probabilistic indel analysis
and its relationship to alignment.

We believe that a suitable foundation for such analysis already
exists, where evolutionary models meet automata theory: the
framework of finite-state transducers. This framework links
Hidden Markov Models (Brown et al., 1993; Churchill, 1992),
sequence alignment algorithms (Gotoh, 1982; Miller and Myers,
1988; Needleman and Wunsch, 1970; Smith and Waterman,
1981), finite-state machines and Chomsky grammars (Durbin
et al., 1998) and molecular phylogenetics (Miklos et al., 2004,
Thorne et al., 1991). In this letter we outline this framework, also
describing a preliminary analysis of one recent algorithm—
Indelign—for reconstructing ancestral indel histories (Kim and
Sinha, 2007).

Below, we briefly review the theory of transducers, concen-
trating not on the details of individual algorithms but rather on
their unifying qualitative character. We show that Indelign,
which reconstructs maximume-likelihood indel histories, is
implicitly based on a transducer model. Thus, we can compare
the computational complexity of Indelign to other transducer-
framed algorithms, with reference to alignment data from recent
comparative genomics projects in Drosophila and Eutheria
(ENCODE). Finally, we discuss several programs, algorithms
and resources available for working with transducers, offering
an outlook on areas of bioinformatics that may benefit from this
theory.

*To whom correspondence should be addressed.

1.1 Theory of finite-state transducers

A transducer is a finite-state machine with an input tape (XX), an
output tape (Y), a symbol alphabet and a set of transition and
(possibly) emission weights. It is therefore very similar to a Pair
HMM (Hidden Markov model), which is also a two-tape finite-
state machine with transition and emission weights (Durbin
et al., 1998). As with a Pair HMM, each transducer state may be
classified as Match, Insert, Delete, Start or End. In both cases,
a path « through the machine corresponds to a pairwise sequence
alignment with an associated likelihood, defined to be the
product of transition and emission weights along the path. Pair
HMMs and transducers have similar sets of algorithms for
inference, including the Forward, Backward and Viterbi
algorithms (Durbin et al., 1998).

The crucial difference is that the Pair HMM’s tapes are
both considered to be outputs, whereas the transducer has one
input and one output. The probabilistic interpretation is
that the path probability for a Pair HMM is the joint
likelihood P(rr, X, Y), while for a transducer it is the conditional
likelihood P(m, Y|X). Conceptually, a transducer represents the
operation of a finite span of evolutionary time (AT), ‘evolving’ the
input sequence into the output sequence by introducing
substitutions and indels at random. We can represent this
operation as X 2L Y.

The feature of transducers that makes them so useful for
comparative sequence analysis is the existence of algorithms for
composing them in series or in parallel (Holmes, 2003; Mohri
et al., 2000), where a series composition represents the
consecutive operation of two transducers (X 2L Y A% 7) and
a parallel composition represents a bifurcation in a phylogenetic
tree (X 2T ¥ and X 2%, 7). By placing a transducer on each
branch of a phylogenetic tree, we can automate the construction
of systematic scoring schemes and algorithms for alignment,
annotation or parameter estimation. Transducers are natural
models for indels on trees, just as continuous-time Markov
chains are natural models for substitutions.

Although transducers have been known in the computer
science literature since the 1950s (Mealy, 1955; Mohri et al.,
2000), they have been applied in bioinformatics only lately
(Holmes, 2003; Searls and Murphy, 1955). In fact, early
probabilistic alignment algorithms share similarities to transdu-
cers (Bishop and Thompson, 1986), as (of course) do Pair
HMMs (Holmes and Durbin, 1998). The breakthrough came
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in the field of statistical alignment (a term coined by Jotun Hein),
which attempts to unite bioinformatics and molecular evolution
via explicit birth-death models for indels and other events.
In pioneering work, the TKF91 model of Thorne et al. (1991)
was used to derive alignment algorithms with linear gap
penalties; these were then extended to multiple sequences on a
tree (Hein, 2001), recognized as examples of HMM algorithms
(Holmes and Bruno, 2001) and formulated using transducers
(Holmes, 2003).

Although the linear gap penalty of TKF91 is occasionally
quoted as a drawback of statistical alignment, this is a
misconception of the role of TKF91. Several transducers with
affine gap penalties have been derived from evolutionary
models (Knudsen and Miyamoto, 2003; Miklos et al., 2004).
TKF91’s role can be seen as a well-studied and canonical (albeit
simple) example, which can be used to illustrate nearly all the
relevant kinds of algorithm, such as HMM state pruning
(Lunter et al., 2003), Expectation Maximization (Holmes,
2005b) or alignment (Lunter et al., 2004).

Transducers provide a convenient bridge between rigorous
phylogenetic analysis of indel processes and the rich lore of
finite-state machine design. Many empirically observed char-
acteristics of genome evolution can be integrated with
transducers: they provide a systematic framework for analyzing
mutation rates, including variations in GC content, fluctuating
local conservation, methylation rate and codon substitution
patterns (Kosiol et al., 2007), and for modeling phenomena
involving indels, including probability distributions over exon
and intron length, stop codon avoidance and conservation of
codon reading frame (Kellis et al., 2003).

Further, transducers are not limited to models where the
indel and substitution processes are independent. Extensions
beyond HMM-like models allow transducers to, in principle,
model microsatellite expansion/contraction, transposon inser-
tion/deletion, local micro-duplications and micro-inversions,
and various other mutation processes that would otherwise
be difficult to analyze mathematically.

Formal extensions to string transducers allow them to model
RNA and gene structure. Related machines, called tree trans-
ducers by linguists, are analogous to Pair Stochastic Context-
Free Grammars and are used to analyze RNA sequences
(Bradley and Holmes, 2007; Holmes, 2005a; Sakakibara, 2003).

Further discussion of transducers, including links to anima-
tions, may be found on our wiki at the following URL: http://
biowiki.org/StringTransducers

2 INDEL HISTORIES

We now turn to the evolutionary model for indels described in
Kim and Sinha (2007) and the associated algorithms. It can
immediately be seen that the Indelign model is a transducer:
conditionally normalizing the probabilities of Indelign’s Pair
HMM gives just the probability P(wr, Y|X) associated with the
evolution X 27y,

Indelign’s ANNOTATE algorithm returns the maximum-
likelihood indel history given a multiple alignment of n observed
sequences. It operates on ‘blocks’, defined as the spans of
maximal ungapped stretches of observed sequence, and
computes the maximum-likelihood indel history of sets of

consecutive dependent blocks by labeling each block as gap or
non-gap for all ancestral sequences. If there are k& such
conditionally dependent blocks, then each node has a labeling
in {*,—}*. A dynamic-programming (DP) version of the
algorithm, which iterates over combined labelings of sets of
three nodes (two siblings and their parent), has a worst-case time
complexity of @ (N23), where N is the number of nodes in the
phylogenetic tree. Note that k is theoretically bounded only by
the alignment length.

This enumeration of indel histories over blocks can be
contrasted with the state-enumeration approach typical of
transducer DP algorithms. Alignment to a composed transdu-
cer can be expressed as a one-dimensional DP problem over an
alphabet of strings in {4, C, G, T, —}¥, where each character in
the string corresponds to the residue or gap at a particular node
in the phylogenetic tree (with N nodes). The composed
transducer has O (¢V) states and hence at most O (a*V)
transitions, where « is the number of states of a single
transducer. By analogy with standard path-inference to an
HMM, we can see that this state-enumeration approach has
time complexity O (L a*"), where L is the length of the multiple
alignment. For the simplest transducers a >~ 3, though it may be
possible to reduce this by redundant-state elimination.
In contrast to the above analysis of Indelign’s ANNOTATE
algorithm, this upper bound on the complexity is not input-
dependent. The term ‘phylo-HMM’ has been coined to describe
such phylogenetically-structured HMMs, particularly when the
multiple alignment is supplied as an external constraint.

The O (La*M) time complexity makes exact DP to a
composed transducer impractical for datasets of many
sequences, but Markov Chain Monte Carlo (MCMC)
approaches offer a principled alternative. Given a multiple
alignment of observed leaf sequences, we can sample exactly
from the posterior distribution over indel histories by starting
with some initial estimate of the indel history and modifying it
by successive local MCMC ‘moves’, e.g. the branch- and node-
sampling moves described in Holmes and Bruno (2001). These
moves involve sampling over only local transducer compositions
around the neighborhood of a single branch or node, allowing
us to avoid the computational cost of inference on the full phylo-
machine. Branch sampling has time complexity O (L? a*) and
node sampling O (L a°): much better than the @ (L a*") cost of
exact inference.

The relative efficiency of Kim and Sinha’s enumerative
algorithm depends strongly on the dataset used. In Figures 1
and 2 we plot the distributions of k-values for two genomic
datasets, the 12 newly sequenced Drosophila genomes
(Drosophila Comparative Genome Sequencing and Analysis
Consortium, 2007) and data from the ENCODE project
(Margulies et al., 2007). Alignments were created with
MAVID (Bray and Pachter, 2004). Most blocks of the
Drosophila alignments belong to relatively short sequences of
conditionally dependent blocks and so are amenable to analysis
with Indelign, but the tail of the distribution stretches to
k-values of greater than 10*. Multiple alignments of the highly
diverged genomes of the ENCODE project are dominated by
very high k-values of order 10°. Indelign’s inference algorithm
grows exponentially in complexity with k, making it likely
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Fig. 1. Distribution of the number k of sequential conditionally
dependent blocks in the MAVID alignments of the 12 Drosophila
genomes (Drosophila Comparative Genome sequencing and Analysis
Consortium, 2007). k£ controls the complexity of Indelign’s DP algorithm
as O (2%F). The frequency axis is log scale, and the k axis has been
truncated at 10° for readability. The tail stretches to 6 x 10*.
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Fig. 2. Distribution of k for MAVID alignments of the ENCODE data
(Margulies et al., 2007). Both axes are log scale.

impractical for analysis of much of this data without further
heuristics or constraints.

Dynamic programming to a composed transducer, on the
other hand, can handle such datasets with a complexity that
is (in the worst case) exponential in the number of tree nodes,
but linear in alignment length. It is even possible to achieve
sub-linear memory complexity with respect to alignment length,
using recursive approaches (Hirschberg, 1975; Tarnas and
Hughey, 1998). Other resource-saving techniques include sparse
DP algorithms such as Treeterbi (Keibler er al., 2007). Such
time- and space-saving approaches may make analysis of even
extremely long genomic sequences increasingly feasible.

Kim and Sinha note that, in practice, the actual complexity
of Indelign is often significantly reduced by the restrictions
on evolutionary histories that they impose, namely that (i) nuc-
leotides cannot be deleted and then re-inserted at the same
position and (ii) indel event boundaries coincide with observed
gap boundaries. Both of these assumptions significantly
constrain the available paths through a phylogenetically
composed transducer, and so should benefit any transducer-
based method. Assumption (i) is often taken as standard in the
statistical alignment literature (Thorne er al., 1991) and is
implicit in the rules for transducer composition (Holmes, 2003).
Assumption (ii) can be expressed as a restriction on the
transitions that the transducer can use at each particular
alignment column.

A strength of Indelign’s approach is the ease with which
arbitrary distributions over indel lengths can be modeled.
HMMs and transducers, in contrast, most naturally model
geometric distributions. Extra states can be introduced to give
arbitrary length distributions (this is the procedure Kim and
Sinha use when describing the Pair HMM of their model) but

much of the expressive power so conferred, such as long tails,
can be compactly approximated by a transducer with a mixture
of geometrics [see Do et al. (2005) for the PROBCONS
program]. This is a long-understood design principle of
bioinformatics state machines (Miller and Myers, 1988).

Addendum: During the review phase for this article, Diallo
et al. (2007) published results using a phylo-HMM extremely
similar to the one we have proposed in this section. In place of
exact MCMC, they introduce a principled approximation that
limits complexity by discarding low-valued cells from the DP
matrix.

3 VERSATILE MACHINES

As we have shown, transducers provide a consistent language
for many different flavors of algorithm, including multiple ali-
gnment (Hein, 2001; Holmes, 2003) and post-alignment infer-
ence (Diallo et al., 2007; Kim and Sinha, 2007). The theory can
frame questions of computational complexity in such models.

The range of possible algorithms extends beyond maximum-
likelihood inference of ancestral indel history. One can sum over
histories using the Forward—Backward algorithm (Durbin et al.,
1998; Holmes, 2003), or sample histories from the posterior
distribution using various flavors of MCMC (Holmes and
Bruno, 2001; Lunter ez al., 2004). Despite several assertions in
the literature that MCMC or statistical alignment are unlikely to
be practical for genomes, there is no reason to anticipate that
this should be so. It is possible to construct transducer-based
MCMC algorithms using similar resources to pairwise align-
ment (Holmes, 2003; Holmes and Bruno, 2001). While
unconstrained pairwise alignment of genomic-scale sequences
is impractical, several methods that impose constraints to reduce
memory usage can be applied to MCMC (Bray and Pachter,
2004; Metzler et al., 2001; Myers and Miller, 1988).

One can readily estimate evolutionary rates and other para-
meters for transducer models. Measurement of evolutionary
rates may reveal natural selection and other interesting
signatures of evolution (Holmes, 2005b; Lunter ez al., 2006).
This can be achieved either by maximum-likelihood techniques
such as Expectation Maximization (Durbin et a/.,1998; Holmes
and Rubin, 2002) or by MCMC (Lunteret al., 2005; Metzler
et al., 2001). Bayesian methods, such as the use of priors,
can easily be introduced (Brown et al., 1993).

Many bioinformatics analyses that use multiple alignments
may benefit from reformulation in terms of transducers.
Examples include phylogeny, where current techniques for
sampling trees can be extended to co-sample alignments
(Lunter et al., 2005); homology profiling, where HMMs that
incorporate evolution have enhanced performance (Qian and
Goldstein, 2004); comparative genome annotation using phylo-
grammars (Klosterman et al., 2000); the detection of protein-
coding genes via indels that preserve reading frame (Kellis
et al., 2003) and the reconstruction of ancestral genomes
(Ma et al., 2006). Transducers can also be used to model local
context-dependent mutations, such as simultaneous substitu-
tions at adjacent nucleotides (Averof er al., 2000), other
context-dependent substitutions such as CpG effects (Lunter
and Hein, 2004; Siepel and Haussler, 2004), or expansion/
contraction of microsatellites. Tree transducers (Fiilop and
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Vogler, 1998) can be used to model the evolution of structured
features such as non-coding RNA genes (Holmes, 2005a) or
protein-coding genes (Carmel et al., 2005). It may even be
possible to model more context-dependent mutations, such as
local duplications, inversions or transpositions, using models
related to transducers.

3.1 Transducer software and algorithms

Several software tools for working with transducers are in
common circulation, some of them unpublished. Tools for stati-
stical alignment, phylogeny and/or parameter estimation include
Handel (Holmes and Bruno, 2001); Phylogeny Café (Miklos
et al., 2007); BEAST (Drummond and Rambaut, 2003); BAIi-
Phy (Suchard and Redelings, 2006); MCMCALGN (Fleissner
etal.,2005; Metzler et al.,2001) MCALIGN (Wang et al., 2006),
PRANK (Loytynoja and Goldman, 2005) and Indelign (Kim
and Sinha, 2007). Our lab provides several transducer-related
tools and resources, including short illustrative animations
(biowiki.org/PhyloFilm).
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