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With the rapidly declining cost of data generation and the accumulation of massive data sets, molecular
biology is entering an era in which incisive analysis of existing data will play an increasingly prominent role
in the discovery of new biological phenomena and the elucidation of molecular mechanisms. Here, we
discuss resources of publicly available sequencing data most useful for interrogating the mechanisms of
gene expression. Existing next-generation sequence data sets, however, come with significant challenges
in the form of technical and bioinformatic artifacts, whichwe discuss in detail. We also recount several break-
throughs made largely through the analysis of existing data, primarily in the RNA field.

Introduction
Recent technological breakthroughs in DNA sequencing have
vastly accelerated the rate and greatly reduced the cost
of generating high-throughput molecular data. The cost of
nucleotide sequencing, for example, is falling faster than even
Moore’s law for integrated circuits (http://www.genome.gov/
sequencingcosts/). Given sufficient download bandwidth and
storage capacity and a desktop computer, anyone with the
appropriate tools can analyze these existing molecular data
sets to address myriad questions in molecular biology. Further-
more, increasing accessibility to supercomputers and cloud
computing allows sophisticated analyses to be performed by
an ever greater number of scientists.
Because individual laboratories or consortia producing and

analyzing large-scale data sets do not (and typically cannot)
explore every possible hypothesis that is supported by their
data, opportunities abound to test new ideas that may have
not been considered previously. In terms of individual data
sets, the opportunities are vast. The NCBI Gene Expression
Omnibus (GEO) has archived more than 32,000 microarray and
sequencing studies that comprise more than 800,000 samples
since 2001 (Barrett et al., 2013; http://www.ncbi.nlm.nih.gov/
geo/). The Sequence Read Archive (SRA), which maintains
sequence data that are either submitted directly to the SRA
or extracted fromGEO submissions, currently hosts over 1 peta-
base (Kodama et al., 2011; http://www.ncbi.nlm.nih.gov/sra)
and is one of the largest data sets hosted by Google (http://
www.dnanexus.com/). Clearly, access to molecular data has
never been greater.
Before diving head first into this immense sea of data, it is

essential to first identify publicly available data sets that con-
stitute the equivalent of a properly controlled experiment. For
example, can data sets be identified that are derived from
matched biological samples? In some cases, answers to these
questions can be easily obtained from metadata associated
with each data set at the GEO and SRA databases. In other
cases, however, this information may be difficult to find, incom-
plete, or even incorrect. Furthermore, expert technical knowl-

edge of the experimental procedures used to generate the
data sets is required to assess potential technical artifacts and
other caveats. Below, we identify particularly useful collections
of publicly available data and discuss common technical arti-
facts that should be taken into consideration when analyzing
next-generation sequencing (NGS) data sets. To demonstrate
the utility of analyzing existing data, we highlight successful
approaches that have generated new ideas regarding the
mechanisms that regulate gene expression.

Identifying Useful Data Sets
Related data set collections that are published together as
a resource provide one solution to the problem of identifying
comparable data sets. For example, Keji Zhao’s group at
the NIH has generated one of the most comprehensive ChIP-
seq studies of epigenomic information from a single human
cell type: resting CD4+ T cells (Barski et al., 2007; Schones
et al., 2008; Wang et al., 2008b). These particular data sets
have been analyzed by many other investigators to identify
specific chromatin marks that combine to constitute ‘‘chro-
matin states’’ (Ernst and Kellis, 2010; Hon et al., 2009), domains
(Shu et al., 2011), and boundaries (Wang et al., 2012), or those
marks which are best correlated with tissue-specific gene
expression (Pekowska et al., 2010; Visel et al., 2009) or gene
architecture (Andersson et al., 2009; Hon et al., 2009; Huff
et al., 2010; Schwartz et al., 2009; Spies et al., 2009; Tilgner
et al., 2009). The studies demonstrate the range of information
that can be gleaned from a single large, coherent collection of
data sets. One reason that these studies were so successful
was because all of the data sets were generated by a single
group, using a consistent method, from a single cell type.
Identifying similarly coherent data sets among the vast sea of
the GEO, SRA, and other data repositories, however, can be
a challenge.
Initiatives such as the 1000 Genomes (Clarke et al., 2012;

The 1000 Genomes Project Consortium, 2010), The Cancer
Genome Atlas, ENCODE (ENCODE Project Consortium et al.,
2012), modENCODE (modENCODE Project Consortium et al.,
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Table 1. Summary of Selected Data Sets Available from Ongoing Genome Projects

Project Organism Data Type Assay Type

Cell Lines/Strains/

Individuals Treatments

Highly Represented

Samples

1000 Genomes Human
1,000 individuals

Genomic WGS >179

WXS >1,000

SNP genotype

(up to 2 methods)

>1,000

WGS of

parent–child trios

2

ENCODEa Human
266 primary

and tissue

cultures

Genomic SNP Genotype 62

Transcriptome CAGE 36 K562, GM12878,

HeLa, HepG2, H1,
A549, Huvec, MCF7

Exon-array 123

RNA-Seq 51

Epigenomic Chromatin
conformation

(up to 2 methods)

13 K562, GM12878,
HepG2, HeLa,

H1, A549

Chromatin marks
and transcription

factors (up to 201

antibody targets)

119

DNA accessibility

(up to 3 methods)

181

DNA methylation
(up to 2 methods)

91

Nucleosomes 2

Mouse
37 primary

tissues and

cultures

Transcriptome RNA-Seq 54 MEL

Epigenomic Chromatin marks

and transcription
factors (up to 56

antibody targets)

28 MEL, CH12, C2C12

DNA accessibility 44

modENCODE Fruit fly
Developmental

stages, cell
culture lines,

and adult tissues

Genomic Genotype

and CNVs

19 cell lines

Transcriptome RACE & CAGE 1

small RNA-Seq 18 stages

RNA-Seq 30 stages/29
tissues/22

cell lines

26 compounds /
59 RNAi

depletions

S2

Epigenomic Nucleosomes
(up to 5 methods)

5 cell lines/4
stages

Chromatin marks

and transcription
factors (up to

102 antibodies)

21 cell lines 4 cell lines />5

stages

Worm
Strains and

developmental

stages

Transcriptome RACE 5 strains

RNA-Seq 9 strains/>18

embryonic stages

N2

Gene expression
microarrays

12 stages/34
strains

Epigenomic Nucleosomes

(up to 2 methods)

4 strains

Chromatin marks and

Transcription factors

(up to 95 antibodies)

(Continued on next page)
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2010; Gerstein et al., 2010), and the Epigenomics Roadmap
(Chadwick, 2012) projects provide additional resources that
are ideal for data integration (Table 1). Because these initiatives
are specifically tasked with providing high-quality resources,
common sets of biological samples, reagents, and methods
are defined for each project. In the case of ENCODE and
modENCODE data sets, established standards must be met
for data to be released (The ENCODE Project Consortium, 2011;
http://genome.ucsc.edu/ENCODE/protocols/dataStandards/).
For example, the modENCODE project has evaluated the
specificity and efficiency of commercial antibodies that are
commonly used to generate ChIP-seq data sets (of which fewer
than 75% passed muster) (Egelhofer et al., 2011). Thus, when
using data from one of these public projects, users can be
reasonably confident that the quality of the data meets or
exceeds certain standards.
These initiatives also generate important control data sets as

resources. For example, it is most appropriate to align sequence
reads from RNA-seq and ChIP-seq experiments to the cell
line-, strain-, or individual-specific genome rather than to a
generic reference genome. Otherwise, single-nucleotide poly-
morphisms (SNPs) may be mistaken for RNA editing sites, and
copy number variations (CNVs) may be mistaken for differential

gene expression or changes in chromatin structure (Pickrell
et al., 2011; Schrider et al., 2011). Accordingly, many of these
initiatives have resequenced the genomes of the cell lines,
strains, and individuals used in the projects.
Lastly, more than 1,500 curated databases are described in

the Nucleic Acids Research online Molecular Biology Database
Collection, many of which collect and integrate existing data to
produce user-friendly, searchable websites (Fernández-Suárez
and Galperin, 2013). As the field of bioinformatics has evolved
to more effectively tackle specific questions in biology (Butte,
2009), cutting-edge databases have been designed to place
mechanistic hypotheses within arm’s reach of investigators by
automating novel data integration strategies. For example, the
HaploReg database integrates user-defined genome-wide
association study results with linkage disequilibrium (The 1000
Genomes Project Consortium, 2010), sequence conservation
information (Lindblad-Toh et al., 2011), and chromatin structure
(Ernst et al., 2011) to link disease-associated genetic variation
with putative regulatory elements (Ward and Kellis, 2012). Simi-
larly, many of the large initiatives (e.g., ENCODE, modENCODE,
etc.) also provide unified exploratory tools (e.g., UCSC and
IGV genome browsers) that allow straightforward evaluation of
genomic regions of interest.

Table 1. Continued

Project Organism Data Type Assay Type
Cell Lines/Strains/
Individuals Treatments

Highly Represented
Samples

Human
Microbiome

Human
Commensal

microbiota

Genomic 16S ribosomal RNA Metagenomes
from 15–18

body sites
WGS

WGS >800 reference
strains

TCGAa Human
Thousands of
tumor samples

from 27 cancers

Genomic WGS 21 Breast invasive

carcinomaCNVsb 21

Transcriptome Gene expression

profilingb
19

Epigenomic DNA methylationb 19

Roadmap
Epigenomea

Human
261 primary

tissues and

cultures total

Epigenomic Chromatin marks
(up to 30 antibodies)

82 H9, H1, IMR90

DNA accessibility

(up to 2 methods)

65

DNA methylation

(up to 4 methods)

80

RNA-Seq 21

The data sets available from initiatives were largely derived from human cell lines, individuals, or commensal bacteria, with the exception of the

modENCODE data sets, which were derived from fly and worm. The types of biological samples used in each project are briefly described in the
second column. Focusing on genomic, transcriptome, and epigenomic applications, we describe the different types of data sets currently available.

Parentheses indicate the number of experimental variations used for an assay. For example, the Roadmap Epigenome Project assessed chromatin

marks by ChIP-seq using 30 different antibodies and DNA methylation by four related assays (e.g., MRE-seq and MeDIP-seq). We also summarize
the number of different cell lines, strains, or individuals for which data sets have been made available and highlight a select group of experimental

treatments. When appropriate, the cell type(s) that is highly represented by a particular application is indicated. Abbreviations are as follows:

whole-genome sequencing (WGS), whole-exome sequencing (WXS), rapid amplification of cDNA ends (RACE), cap analysis of gene expression

(CAGE).
aENCODE data sets as of January 14, 2013, http://genome.ucsc.edu/ENCODE/dataSummary.html, http://genome.ucsc.edu/ENCODE/

dataSummaryMouse.html; TCGA as of June 18, 2012, https://tcga-data.nci.nih.gov/tcga/; Roadmap Epigenome Project as of June 19, 2012,

http://www.genboree.org/epigenomeatlas/index.rhtml.
bVarious methods were used.
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NGS Data Sets: Prospects and Best Practices
New advances in NGS technologies are greatly expanding the
current volume and the range of existing data (Metzker, 2010).
As there is no evidence that innovations in sequencing tech-
nology are slowing down, it can only be anticipated that the
pace of generating sequence data will continue to increase
and the cost will decrease. By the start of 2012, approximately
75,000 genomic, 15,000 transcriptome, and 15,000 epigenomic
submissions had been contributed to the SRA (Figure 1A).
However, that volume of data represents only the tip of the
iceberg, as transcriptome and epigenomic applications will be
applied to include a greater range of cell types and species.
Indeed, the number of transcriptome and epigenomic submis-

human model organisms crop species
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Figure 1. An Overview of the Publicly
Available Data at the Sequence Read
Archive Based on User-Submitted
Metadata
(A) Half of the Sequence Read Archive (SRA)
submissions have been generated by genomic
library strategies, mostly whole-genome se-
quencing (green). The second half is composed of
library strategies from transcriptome (blue), epi-
genomic (red), and other applications (purple).
Epigenomic applications are diverse, despite
composing <10% of all SRA submissions. These
include numerous library strategies used to assess
accessible or methylated DNA and nucleosomes
(MNase-seq) or their posttranslational modifica-
tions (ChIP-seq) (shades of red).
(B) The SRA’s growth rate, which is greatly
increasing over time.
(C) Human SRA submissions, mostly whole-
genome sequences, outnumber submissions from
most other species by orders of magnitude.

sions has been steadily increasing,
particularly in recent years (Figure 1B).
Transcriptome and epigenomic appli-

cations have been applied most liberally
to humans and model organisms such
as mouse, fly, worm, and yeast (Fig-
ure 1C). While the transcriptome data
sets consist almost entirely of RNA-seq
experiments, the epigenomic data sets
are generated using a large collection of
methods that interrogate various aspects
of chromatin structure. The epigenomic
experiments include methods to assess
DNA accessibility (Boyle et al., 2008),
DNA methylation (Laird, 2010), the ge-
nomic locations of transcription factors
and chromatin marks (ChIP-seq) (Park,
2009; Schones and Zhao, 2008), and
nucleosome positions (MNase-seq)
(Jiang and Pugh, 2009) (Figure 1A, red
bar graph). Additionally, specialized
applications have also been submitted
to the SRA that assess chromatin con-
formation (de Wit and de Laat, 2012;
Dekker et al., 2002; Fullwood et al.,

2010), RNA:protein interactions (Licatalosi and Darnell, 2010;
Ule et al., 2005), RNA polymerase elongation (Churchman and
Weissman, 2011; Core et al., 2008), and ribosome occupancy
(Ingolia et al., 2009). In theory, any process related to nucleic
acid metabolism can be assessed with the proper biochemical
preparation, which makes NGS applications a rich and powerful
source for integrative data analysis (Hawkins et al., 2010).
Furthermore, NGS data sets are extraordinarily rich. The

sequence reads from a single experiment can provide a vast
array of quantitative, positional, and sequence information.
For instance, RNA-seq data sets provide sufficient information
to measure mRNA expression levels and alternative splicing,
to identify transcriptional start site and polyadenylation sites,
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and to identify instances of RNA editing. In certain cases,
allele-specific gene expression, allele-specific splicing, and
even trans-splicing can be measured. Further, RNA-seq can be
used as a discovery tool to annotate novel coding and noncoding
transcripts as well as chimeric transcripts that result from
genomic rearrangements (Figure 2) (Martin and Wang, 2011;
McManus et al., 2010; Ozsolak and Milos, 2011; Wang et al.,
2009). Though these data sets are very rich, they must be
analyzed carefully. Essentially every step involved in generating
NGS data introduces detectable, sometimes substantial, biases
or errors (Figure 3). This presents a particular challenge for data
integration, since different sequencing platforms, biochemical
procedures, and data processing methods are associated
with unique caveats. With the proper controls, however, these
effects can often be identified and accounted for in downstream
analyses.
NGS platforms have been in use long enough that biases

attributable to library construction and sequencing have been
evaluated in great detail. Data generated by the Illumina plat-
form, for example, are subject to base-call errors that increase
with read position due to phasing issues (Dohm et al., 2008)
and underrepresentation of high and low GC content reads
(Dohm et al., 2008; Risso et al., 2011). As these technical issues
are well characterized, popular analysis packages attempt to
correct for such nucleotide biases. For example, Cufflinks,
a popular program used tomeasure differential gene expression,

empirically determines nucleotide biases present in RNA-seq
data sets and corrects for them (Meacham et al., 2011; Trapnell
et al., 2012). While this strategy vastly improves comparisons
between independently generated data sets, and even from
different sequencing platforms, third-generation sequencing
platforms, such as those from IonTorrent, PacificBiosciences
and Oxford Nanopore (and other lurking companies), use
radically different chemistries, the biases of which will need to
be identified and remedied.
Less recognized are the myriad experiment-specific biases

or artifacts that are introduced at nearly every step involved in
preparing libraries and sequencing them. For example, it has
clearly been shown that RNA-seq libraries prepared using
random-hexamer priming display a systematic nontemplated
sequence profile at the beginning of reads which is primarily
due to first-strand synthesis (Hansen et al., 2010). This technical
artifact appears to be a major source of the controversial
!10,000 ‘‘RNA DNA differences’’ (proposed RNA editing sites)
identified from human cell lines that were recently reported
(Li et al., 2011) and subsequently called into question (Kleinman
and Majewski, 2012; Lin et al., 2012; Pickrell et al., 2012).
Similarly, ChIP-seq experiments overrepresent regions of
open chromatin, which can create false positives (Chen et al.,
2012).
Another technical artifact associated with library preparations

is template switching that occurs during the amplification
steps, which can give rise to molecules that did not exist in the
initial biological sample. For RNA-seq experiments, this type of
artifact can generate ‘‘chimeric’’ RNAs that appear to be syn-
thesized by trans-splicing or some unknown biological process
(Gingeras, 2009; McManus et al., 2010). Sequence data from
control libraries that assess the frequency of template switching
are absolutely essential to distinguish biologically derived
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Figure 2. RNA-Seq Data Sets Are Information Rich
Due to the single nucleotide resolution and annotation-independent nature
of RNA-seq data, many different processes can be analyzed from a single
RNA-seq data set. For example, novel, unannotated transcripts can be iden-
tified as expressed regions that do not overlap with annotated gene models.
Poly(A) sites can be identified by mining RNA-seq data sets for reads that span
poly(A) sites (where part of the read contains genomic sequence and the rest of
the read corresponds to the poly[A] tail). Alternative splicing can be identified
and measured by identifying reads that map to splice-junction sequences
specific to one isoform or another. Allele-specific expression can be quantified
from reads that map in an allele-specific manner as determined by allele-
specific SNPs. Similarly, trans-splicing can be monitored by identifying mate
pairs where one read maps to one allele and the other read maps to the other
allele. Finally, RNA editing sites can be identified and quantified by identifying
RNA-seq reads that map accurately but contain a sequence different from the
reference genome. In the case of allele-specific expression, trans-splicing, and
RNA editing, it is critical to use a high-quality genome sequence containing
confident SNP calls specific to the sample being studied, to use appropriate
experimental and bioinformatic controls, and to validate the findings.
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Biological
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Application?
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Sequence
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specific biases
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Figure 3. Stages at which Artifacts, Errors, and Biases Can Be
Introduced in NGS Experiments and Analysis
Refer to text for details.
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chimeric RNAs from those generated artifactually (McManus
et al., 2010).

In addition to experimental artifacts, bioinformatic artifacts
can severely impact data interpretation. A major source of these
artifacts is the mappability of NGS sequence reads, which are
typically 25–100 nt in length. Mapping these sequences to
a reference genome can be particularly problematic due to the
plethora of repetitive elements present in most genomes. Repet-
itive elements such as LINEs and SINEs have always presented
difficulties for correctly mapping sequences, but the short size of
NGS reads significantly amplifies this problem—as read length
decreases, so does the number of unique regions that can be
mapped within a reference genome (Treangen and Salzberg,
2012). Consequently, ‘‘mappability’’ differs depending on read
length. Such biases can create illusory nonrandom associations
with biological features (e.g., exons) in ChIP- and MNase-seq
experiments. For example, with 32 bp reads, tiny but common
genomic features, such as coding starts, ends, exons, and
splice sites accumulate greater read densities than other local
features (e.g., introns) (Schwartz et al., 2011). Thus, mappability
must be carefully considered when interpreting any type of
alignment data.

A second bioinformatic artifact is caused by genetic variation
that has not been accounted for. CNVs that differ between
experimental samples and reference genomes, for example,
can create false-positive enrichment regions in ChIP-seq ex-
periments (Pickrell et al., 2011). Studies of RNA editing are
particularly susceptible to high false discovery rates if SNPs
are not accounted for in the analysis. In the case of RNA DNA
differences (Li et al., 2011), 55% match the genome of at least
one of the 27 individual genomes used in the original analysis,
which suggests that the relatively low coverage (2–63) of these
genomes was not sufficient to identify and eliminate confound-
ing SNPs (Schrider et al., 2011). Thus, a matched reference
genome—with sufficiently deep coverage—should be used
when mapping short reads, since experimental samples such
as cell lines, strains, and individuals may differ in their SNPs,
CNVs, and chromosome number. Even then, care must be taken
to ensure that interesting results are not correlated with regions
of shallow sequence depth.

NGS technologies are rapidly evolving. Consequently, robust
computational methods lag behind this moving target. Thus,
data generated by the early adoption of exciting new technolo-
gies should be evaluated, first and foremost, with critical
attention to sequence biases. It is our opinion that novel
phenomena will increasingly be discovered by the use of exist-
ing data. However, these phenomena are only as compelling as
the support for an underlying mechanism. The vast potential for
technical artifacts in NGS data are more than enough reason
for caution, particularly since some technical artifacts are, in
fact, not random and may correlate strongly with known biolog-
ical features. Here, we are reminded of a sage warning made
by Daniel MacArthur in reference to remarkable results ob-
tained by analyzing large NGS data sets: ‘‘The more surprising
a result seems to be, the less likely it is to be true’’ (MacArthur
et al., 2012). We implore data analysts to heed this warning and
perform extensive validation of remarkable findings, or they
may indeed fall victim to MacArthur’s rule.

Successful Uses of Existing Data
The Watson-Crick model of DNA—the double helix—was devel-
oped largely through model building informed by existing data
(Watson and Crick, 1953a, 1953b). Although structural evidence
supporting the model required meticulous experimentation
(Franklin andGosling, 1953;Wilkins et al., 1953), themodel alone
suggested the basis of genetic inheritance as well as DNA
replication and recombination (Watson and Crick, 1953a,
1953b). Despite lacking any knowledge of the complex protein
machines responsible for replication and recombination, the
central predictions were, nonetheless, essentially proven within
a decade (Alberts, 2003). Thus, the double helix exemplifies
how the insightful analysis of existing data can revolutionize
a field.
There are numerous examples in which insights into the

molecular mechanisms of various biological processes have
been gleaned from analyzing existing data. Below we discuss
several of these and attempt to highlight the general aspects of
each study as a lesson for how each approach can be applied
to other problems. We focus on problems related to various
aspects of RNA biology, though these approaches can be
used for other molecular processes as well.
Identifying Functional Elements through Conservation
Functionally important sequence elements are expected to be
conserved over time. Thus, one way of investigating a particular
process is to identify conserved sequence elements using
alignments of multiple whole-genome sequences. Conservation
plots can be generated from such alignments using several
software packages that calculate nucleotide substitution rates.
Conveniently, conservation scores based on whole-genome
alignments using phastCons (Siepel et al., 2005), phyloP (Pollard
et al., 2010), or SiPhy (Garber et al., 2009) can be downloaded
from the UCSC genome browser for many model organisms,
including yeast, worm, fly, and various mammals including
mouse and human (Kent et al., 2002). Analyzing the identity,
characteristics, and locations of conserved sequences can
provide tremendous mechanistic insight. Below, we highlight
two such examples, in the fields of RNA editing and alternative
splicing, that utilized this approach.
Adenosine-to-inosine (A-to-I) editing of RNA is an evolu-

tionarily conserved process catalyzed by the ADAR family of
adenosine deaminases (reviewed in Rieder and Reenan, 2011).
A mystery that dogged the field for some time was the paucity
of known endogenous RNA targets—only a few chance dis-
coveries had been described—despite evidence that the inosine
content of mRNA isolated from brain tissues might be as high
as 1 in every 17,000 nucleotides (Paul and Bass, 1998). Armed
with the knowledge that ADARmutations resulted in neurological
defects (Palladino et al., 2000) and that ADAR editing required
an RNA duplex formed between the targeted region (containing
the edited adenosine) and a complementary sequence (Higuchi
et al., 1993), Hoopengardener and colleagues (Hoopengardner
et al., 2003) searched for new targets of RNA editing among
the neuronally expressed genes of Drosophila. In the case of
para, which encodes aNa+ channel, the exon containing a known
editing site is very highly conserved near the editing site, as is
a region in the adjacent intron which base pairs with the edited
exon. Based on this observation, Hoopengardner et al. (2003)
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reasoned that they might be able to identify new RNA editing
targets by identifying very highly conserved exons. They
therefore assessed 914 neuronally expressed genes to identify
exons with a high level of sequence constraint between
Drosophila melanogaster and Drosophila pseudoobscura. This
approach proved highly productive, as 16 new editing sites
were identified that were validated by cDNA sequencing (Hoo-
pengardner et al., 2003) (Figure 4A illustrates one such example).
Importantly, this use of comparative genomics demonstrated
a previously unanticipated degree of phylogenetic conserva-
tion between A-to-I editing sites, solidified the RNA duplex-
dependent mechanism of ADAR function, and provided a
facile bioinformatic strategy for editing-site identification.
Indeed, improved variations of this approach using existing
EST:genome alignments (Levanon et al., 2004) or archived
sequence chromatograms (Zaranek et al., 2010) have now
greatly increased the number of high-confidence A-to-I editing
candidates (reviewed in Wulff et al., 2011).
A similar approach has been used to uncover novel mecha-

nisms that regulate alternative splicing. In one particularly illus-
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Figure 4. Comparative Approaches Reveal
Insights into the Mechanisms of RNA
Editing and Alternative Splicing
(A) The Drosophila synaptotagmin (syt) gene
contains two editing sites in exon 9 (indicated as
red adenosine [A] residues [bottom]). On the top,
the region between exons 9 and 10 is shown along
with the insect conservation track. Editing within
this exon was first identified by the high extent
of conservation (top) (Hoopengardner et al., 2003).
Subsequent studies revealed that editing is
directed by RNA duplexes formed between the
highly conserved sequences highlighted in purple
and the two highly conserved intronic sequences
highlighted in orange and green. These sequence
elements form a pseudoknot structure that places
the edited residues into a double-stranded RNA
structure that can be recognized by dADAR.
(B) The exon 6 cluster of the Drosophila Down
syndrome cell adhesion molecule (Dscam) gene
contains 48 alternative exons, only one of which is
included in each mRNA. On the top, the region
from constitutive exon 5 and the first two alterna-
tive exons is shown along with the insect con-
servation track. The intron between exons 5 and
6.1 contains a highly conserved sequence called
the docking site (orange), which can base pair
with a selector sequence located upstream of
each variable exon. In this case, the selector
sequence for exon 6.2 is highlighted in green. On
the bottom, the base pairing between the docking
site and the exon 6.2 selector sequence is shown.

trative case, the Drosophila Dscam
gene, conservation within introns was
used to uncover a novel mechanism of
mutually exclusive splicing (Graveley,
2005). Dscam is a textbook example of
the importance of alternative splicing in
increasing protein diversity, as it may
generate more than 38,000 different
protein isoforms (Schmucker et al.,
2000). Each time the Dscam gene is tran-

scribed, the pre-mRNA is spliced such that eachmRNA contains
one and only one exon from each of four exon clusters (exons 4,
6, 9, and 17, specifically). But at the time of its discovery, no
previously described mechanism of mutually exclusive splicing
could explain how the many variable exons ofDscam are spliced
in a mutually exclusive manner.
Compared to exons, which are often highly conserved due

to their coding potential, intronic regions typically have little
conservation except at sites that have noncoding function,
such as RNA splicing. Nucleotide alignments from 15 insect
species revealed two types of conserved sequence elements
in the introns of the exon 6 cluster (Graveley, 2005). The first
element, the docking site, was located between exon 5 and
the first exon 6 variant. Importantly, the docking site was found
only once in the exon 6 cluster, but was present in every species
examined, even species that diverged more than 450 million
years ago. Selector sequences, the second type of sequence
element, were located in introns upstream of each exon 6
variant. Based on their complementary sequences, the docking
site and selector sites appeared to base pair with one another;
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however, one and only one of the selector sequences could base
pair with the docking site at a time (Figure 4B). Thus, base pairing
of one selector sequence with the docking site would be pre-
dicted to promote inclusion of that exon while simultaneously in-
hibiting the splicing of the 47 other exon 6 variants. Though this
mechanism was discovered purely by comparative genomics
and bioinformatics, the elegance and universal conservation
among insects lent credence to the proposed mechanism.
Experimental confirmation of the model was subsequently ob-
tained using mutagenized BACs containing the entire Dscam
gene (May et al., 2011). Further demonstrating the power of
this approach, additional docking site:selector sequences within
the other Dscam clusters and even other alternatively spliced
genes have been identified largely on the basis of intronic
conservation (Yang et al., 2011).

These two examples illustrate how conservation can be used
to identify functional elements that provided insight into the
mechanisms of RNA editing and alternative splicing. However,
these approaches can be used to study many other processes.
For instance, candidate functions have been assigned to !60%
of the conserved sequences in mammals (Lindblad-Toh et al.,
2011), yet 40% of these elements have unknown functions.
Moreover, another 10,000 regions of mammalian coding
sequences are predicted to have overlapping functions; yet
again, these functions are mostly unknown. Thus, a fruitful
avenue of research is to use existing multiple sequence align-
ments to identify the conserved sequence elements associated
with a gene or process of interest. The function of conserved
sequences will likely require experimental approaches to
determine their functions, but they may also be inferred based
on their sequence features or locations alone.
Functional Relationships Identified through Data
Integration
More recently, analyses of existing data have made a significant
impact on the burgeoning study of cotranscriptional splicing. A
growing body of evidence now supports the notion that tran-
scription and splicing are not only concurrent but also coupled,
such that transcriptional dynamics profoundly influence RNA
splicing (Neugebauer, 2002). For example, the elongation rate
of RNA polymerase can influence the propensity for exon skip-
ping (Kornblihtt et al., 2004). Until recently, however, little was
known about the relationship between cotranscriptional splicing
and the chromatin context in which it takes place. By integrating
existing epigenomic data sets with known splicing patterns,
recent studies have generated exciting new hypotheses that
intimately connect chromatin structure to RNA splicing.

A major challenge associated with studying chromatin struc-
ture is its immense complexity. Even the most fundamental
unit of chromatin, the nucleosome, can differ between genomic
regions in occupancy, positioning, and myriad posttranslational
modifications (a.k.a. chromatin marks). It has long been
observed in S. cerevisiae, for instance, that the chromatin
mark, histone H3 lysine 36 trimethyation (H3K36me3), is en-
riched within the bodies of active genes (reviewed in Li et al.,
2007). Thus H3K36me3, and many other marks, are thought to
be intimately associated with transcriptional processes. Ques-
tions concerning whether chromatin marks might affect, or be
affected by, splicing were rarely discussed until genome-wide

ChIP surveys in C. elegans demonstrated higher levels of
H3K36me3 at exons compared to nearby introns within the
same gene (Kolasinska-Zwierz et al., 2009). As this finding was
entirely unanticipated, Kolasinska-Zwierz et al. turned to publicly
available H3K36me3 ChIP-seq data (Barski et al., 2007) to test
the relevance of their findings to humans. By aggregating all
of the H3K36me3 sequence reads that aligned near exons
(a so-called ‘‘metagene’’ analysis), the authors observed strik-
ingly similar H3K36me3 enrichment at the average human
exon (Figures 5A and 5B, blue panel).
Furthermore, integrating H3K36me3 ChIP data with annota-

tions of alternative and constitutive exons revealed a potential
connection between the degree of chromatin marking and
alternative splicing. A modest but suggestive decrease in
H3K36me3 reads at alternatively spliced exons was observed
in both worm andmouse (Kolasinska-Zwierz et al., 2009). Similar
analyses have been somewhat conflicting (Hon et al., 2009;
Spies et al., 2009), but this may simply indicate that the differ-
ences between constitutive and alternatively spliced exons are
subtle. Nonetheless, the notion that chromatin marks, and
in particular H3K36me3, can affect alternative splicing is con-
sistent with several recently reported experiments. Indeed, two
H3K36me3-binding proteins, MRG15 and PSIP1, have been
implicated in mediating alternative splicing regulation by the
splicing factors PTB and SRSF1 (ASF/SF2), respectively (Luco
et al., 2010; Pradeepa et al., 2012). Additional marks, such as
H3K4me3 and H3 acetylations, have also been shown to
influence splicing (Gunderson and Johnson, 2009; Sims et al.,
2007). Most likely, chromatin marks function in splicing by
modulating RNA polymerase elongation rates or by recruiting
specific splicing factors to active genes (Luco et al., 2011, and
references therein; Nilsen and Graveley, 2010). Intriguingly,
depletion of the only known H3K36me3 methyltransferase
influences the splicing of only a small, but significant, subset of
PTB-dependent splicing events (Luco et al., 2010). Such gene-
specific affects might also explain why genome-wide correla-
tions between H3K36me3 and alternative splicing have been
modest.
Numerous studies have since analyzed more than 41 chro-

matin marks using publicly available epigenomic data sets,
which have yielded a strong consensus: chromatin structure
reflects gene architecture. In humans, three types of exon/intron
boundaries have been shown to be associated with particular
chromatin marks: (1) H3K4me3 and H3K9Ac throughout
the length of the first exon (Bieberstein et al., 2012), (2)
H3K79me2 (among several other marks) throughout the length
of the first intron (Huff et al., 2010), and most notably (3)
H3K36me3 enrichment at internal exons (Andersson et al.,
2009; Hon et al., 2009; Huff et al., 2010; Spies et al., 2009).
Because these chromatin marks are intimately associated with
transcription, these results suggest a much closer connection
between the splicing and transcription machineries than previ-
ously thought.
Similarly, analysis of published MNase-seq data (Schones

et al., 2008; Valouev et al., 2008) revealed that nucleosomes
themselves were also highly associated with internal exons
(Andersson et al., 2009; Huff et al., 2010; Schwartz et al., 2009;
Spies et al., 2009; Tilgner et al., 2009). Based on this observation,
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a novel mechanism for exon definition has been proposed (but
yet to be proven), whereby nucleosome occupied exons serve
as RNA polymerase ‘‘speed bumps’’ that provide additional
time for the spliceosomal machinery to recognize nearby splice
sites (Schwartz et al., 2009; Tilgner et al., 2009).
In theory, elevated nucleosome occupancy at exons alone

could explain the previously identified enrichment of
H3K36me3 at exons (Schwartz et al., 2009; Tilgner et al.,
2009). However, bioinformatic analyses comparing nucleosome
occupancy at exons, exon-like composition regions (ECRs),
and pseudoexons have uncovered evidence that the mecha-
nisms determining nucleosome occupancy and H3K36me3
enrichment at exons are distinct. To discern which aspects of
exon sequence might be necessary and sufficient for high
nucleosome occupancy, sequence characteristics of exons
were analyzed separately for high nucleosome occupancy. In
this case, the average ECR, which is not flanked by splice sites
but does have the same GC content of the average exon, dis-
played nucleosome occupancies equal to that of the average
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Figure 5. From Observations at Individual
Genes to Genome-wide Analyses
(A) Data integration using the UCSC genome
browser. ChIP-seq (Barski et al., 2007), MNase-
seq (Schones et al., 2008), and ECR (Spies et al.,
2009) positions were uploaded to the UCSC
genome browser to compare the chromatin
structures of the ITSN2 (top panel) and RBM16
(bottom panel) genes. ChIP-seq reads for
H3K4me3 (red), but not H3K36me3 (blue), are
enriched at the promoter of each gene.
(B) Genome-wide aggregate ‘‘metagene’’ anal-
yses demonstrate that chromatin structure reflects
gene architecture. For example, H3K4me3 (red
line) and H3K36me3 (blue line) are enriched at the
average promoter (red panel) and the average
internal exon (blue panel), respectively. Similarly,
metagene analyses show that nucleosomes are
enriched at the average internal exon (blue panel)
and the average ECR (brown panel), which
suggests that exon-like sequence content alone is
sufficient for high nucleosome occupancy (Spies
et al., 2009).

exon (Spies et al., 2009) (Figure 5B,
brown panel). Conversely, the average
pseudoexon, which has lower GC con-
tent than the average exon, was depleted
for nucleosome occupancy (Tilgner et al.,
2009). Thus, the DNA sequence com-
position of exons alone may be sufficient
for exon-like nucleosome occupancy.
Lastly, ECRs were not enriched for
H3K36me3, which suggests that exon
marking reflects some aspect of splicing
rather than exon-like sequence com-
position (Huff et al., 2010) (Figure 5B,
brown panel). Further supporting a role
for the spliceosome in specifying
chromatin structure, recent experiments
in which splicing was inhibited by
splice site mutations or spliceostatin

exposure have indeed caused changes in H3K36me3 marking
(de Almeida et al., 2011; Kim et al., 2011).
The above analyses demonstrate the power of data integra-

tion to establish new connections between related processes
whose mechanistic links may yet be unclear. In some cases,
these relationships can be readily observed at single genes using
a genome browser to facilitate comparisons between data sets.
In such cases, moving from observations at single loci to
genome-wide analyses can be accomplished by aggregating
values from genome-wide data sets at specific features of
interest (Figure 5). Genome-wide relationships can also be
revealed by plotting all relevant loci in a high-density heatmap
that is aligned and sorted to highlight features of interest
(Hawkins et al., 2010). The latter approach is particularly useful
in instances in which summary statistics like the genome-
wide averages might be deceptive (e.g., the mean of a bimodal
distribution). Thus, by integrating and aggregating existing
data, a mere anecdote can be transformed into a global
principle.
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Estimating the Frequency and Functional
Consequences of Poorly Characterized Biological
Phenomena
Publicly available data can also be used to assess the preva-
lence and functional consequences of previously ignored biolog-
ical phenomena. In animals, alternatively spliced genes are the
norm; more than 92% of human genes produce at least one
alternatively spliced transcript (Pan et al., 2008; Wang et al.,
2008a). While many of these alternatively spliced transcripts
are predicted to encode functionally distinct protein isoforms,
others encode protein isoforms whose biological relevance is
questionable. Thus, the perennial question: which of these
splicing events are regulated and which are stochastic?

For instance, alternative splicing may introduce premature
termination codons (PTCs) that target the message for degrada-
tion by nonsense-mediated decay (NMD). Such unproductively
spliced transcripts could be regulated to function as posttran-
scriptional on/off switches, or merely splicing mistakes in need
of triage. Only a few genes were previously known to be regu-
lated by unproductive splicing. Publicly available EST data, on
the other hand, suggested that nearly one-third of alternatively
spliced transcripts were potential NMD targets (Lewis et al.,
2003). This unexpectedly high prevalence brought new attention
to the hypothesis that unproductive splicingmight posttranscrip-
tionally regulate the expression of entire classes of genes.
Controversy initially surrounded the original EST-based esti-
mates because experiments that depleted NMD factors to iden-
tify stabilized unproductively spliced transcripts yielded more
conservative estimates. By microarray, only !10% of cassette
exons substantially elicited NMD (Pan et al., 2006), and tissue-
specific regulation was found to be rare. More recent
approaches using RNA-seq, which allow for all major forms of
splicing to be considered, have brought these numbers closer
to initial estimates, but only for some tissues (Weischenfeldt
et al., 2012). Nonetheless, the question as towhether a significant
portion of unproductive splicing regulates the expression of
entire classes of genes was answered through analyses that
showed that unproductively spliced transcripts were enriched
for genes encoding splicing factors and other RNA-binding
proteins (Ni et al., 2007; Saltzman et al., 2008). Another experi-
mental study demonstrated that the entire family of human SR
proteins was associated with unproductive splicing (Lareau
et al., 2007). These studies satisfyingly confirmed and extended
previous reports of autoregulation by unproductive splicing
(reviewed in McGlincy and Smith, 2008). Thus, as with the
previous examples, an initial breakthrough was achieved
through the analysis of existing data, followed by further refine-
ment and proof through experimental studies.

The functional consequences of alternative splicing decisions
that produce nearly identical protein isoforms has also been as-
sessed using publicly available data sets. In this case, introns
ending in NAGNAG (a tandem duplication of the 30 splice site
NAG) have been previously shown to be alternatively spliced
such that their protein isoforms differ by only a single amino
acid based on publicly available EST data (Hiller et al., 2004;
Hiller and Platzer, 2008). However, whether these small differ-
ences are regulated or stochastic has been questioned (Chern
et al., 2006). By first analyzing their own experimental data, Brad-

ley et al. (2012) confirmed that there is broad use of NAGNAG
splicing in human and mouse tissues. Motivated by these find-
ings, the authors also mined the extensive collection of RNA-
seq data sets generated by the Drosophila and C. elegansmod-
ENCODE projects. Strikingly, 500 NAGNAGs splice sites were
found to be alternatively spliced in at least one of 30 develop-
mental time points in Drosophila, while NAGNAG splicing in
C. elegans was considerably less dynamic. Approximately
5%–14% of alternatively spliced NAGNAGs were found to be
developmentally regulated and conserved, such that the most
dynamically spliced NAGNAGs were associated with the great-
est intronic sequence conservation.While themechanisms regu-
lating NAGNAG splicing remain unclear, these analyses provide
the best evidence to date that even small changes in splicing are
commonly regulated (at least in some animals).
The above examples demonstrate the utility of large data sets

to assess the prevalence of intriguing phenomena. With large
collections of data sets, the prevalence of tissue-specific or
developmental regulation can be estimated with tremendous
breadth. In such pursuits, however, it is essential to accurately
assess the false discovery rate of the analysis. In the above
example of NAGNAG splicing, the mean false discovery rates
for technical and biological replicates were estimated at a very
reasonable 4.4% and 1.1%, respectively. This is another area
in which heeding MacArthur’s rule is well advised.
Unsupervised Methods
Here we have highlighted successful strategies for supervised
data mining of existing data. Although not discussed at length
here, unsupervised methods like machine learning algorithms
also demonstrate great promise for researchers seeking to un-
biasedly analyze large data sets. A machine learning algorithm
has recently been used to write a first draft of the splicing
code—a set of rules so expansive that it is best referenced
with the aid of a computer (Barash et al., 2010). This approach
led Barash et al. to identify novel sequence motifs associated
with regulated alternative splicing as well as a new example
of developmentally regulated unproductive splicing. As the
quantity of available data sets increases, it is almost certain
that unsupervised methods will become more broadly used for
analyses.

Analytical Skills Needed for the Future
In a recent poll, most scientists reported that they ‘‘rarely’’
accessed data or used data sets from the published literature
for their original research papers (Science Staff, 2011). However,
this will undoubtedly change. The opportunities and challenges
of ‘‘Big Data’’ are being felt not only in the biological sciences,
but also in society at large (Lohr, 2012). Thus, students will
gain transferable skills from exercises that teach basic work-
flows using large data sets and scripting languages.
At a minimum, we envision teaching exercises that require

biology students to devise an experimental design using only
existing data; access relevant data sets from archives; parse
and integrate data using programing languages such as Perl,
Python, Ruby, or R; and apply an appropriate visualization
technique. Laboratory protocols for the use of analytic software
currently exist to aid these pursuits (e.g., Cufflinks) (Trapnell
et al., 2012). Such exercises will empower students to explore

614 Molecular Cell 49, February 21, 2013 ª2013 Elsevier Inc.

Molecular Cell

Review



and assess the quantitative data published in the manuscripts
that they read, which can no longer be assessed at a glance
like the qualitative gel-based results on which molecular biology
was founded. Ultimately, it will be equally important to know
how to write code as it is to pipette.
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