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Abstract DUX4 is a transcription factor whose misexpression in skeletal muscle causes

facioscapulohumeral muscular dystrophy (FSHD). DUX4’s transcriptional activity has been

extensively characterized, but the DUX4-induced proteome remains undescribed. Here, we report

concurrent measurement of RNA and protein levels in DUX4-expressing cells via RNA-seq and

quantitative mass spectrometry. DUX4 transcriptional targets were robustly translated, confirming

the likely clinical relevance of proposed FSHD biomarkers. However, a multitude of mRNAs and

proteins exhibited discordant expression changes upon DUX4 expression. Our dataset revealed

unexpected proteomic, but not transcriptomic, dysregulation of diverse molecular pathways,

including Golgi apparatus fragmentation, as well as extensive post-transcriptional buffering of

stress-response genes. Key components of RNA degradation machineries, including UPF1, UPF3B,

and XRN1, exhibited suppressed protein, but not mRNA, levels, explaining the build-up of aberrant

RNAs that characterizes DUX4-expressing cells. Our results provide a resource for the FSHD

community and illustrate the importance of post-transcriptional processes in DUX4-induced

pathology.

DOI: https://doi.org/10.7554/eLife.41740.001

Introduction
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the inappropriate expression of an

early embryonic transcriptional activator, DUX4, in adult muscle, leading to cell death (Tawil et al.,

2014; Lemmers et al., 2010). Decades of work have generated a detailed list of the genes and

pathways affected by DUX4 that may underlie FSHD pathophysiology (Geng et al., 2012;

Block et al., 2013; Young et al., 2013; Banerji et al., 2015; Feng et al., 2015; Homma et al.,

2015; Dmitriev et al., 2016; Shadle et al., 2017). An integrated model for how those DUX4-

induced changes lead to disease has, however, remained elusive (Campbell et al., 2018; Lek et al.,

2015; Tassin et al., 2013). As transient and pulsatile expression of DUX4 is sufficient to induce

pathology and cell death (Rickard et al., 2015), it is critical that we understand the cellular events

and pathways set in motion by DUX4 that lead to eventual cell death, in order to develop effective

therapeutics for FSHD.
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DUX4 induces changes in the expression of hundreds of genes that impact dozens of highly inter-

connected pathways (Geng et al., 2012; Block et al., 2013; Young et al., 2013; Banerji et al.,

2015; Feng et al., 2015; Homma et al., 2015; Dmitriev et al., 2016; Shadle et al., 2017), making

a cause-and-effect relationship between dysregulated gene expression and FSHD pathology difficult

to discern. Because DUX4 is a strong transcriptional activator, most studies of DUX4 activity have

focused on measuring gene expression at the transcript level (Geng et al., 2012; Rickard et al.,

2015; Knopp et al., 2016), thereby implicitly assuming that the transcriptome accurately represents

the cellular proteome in DUX4-expressing cells. Although this is a reasonable assumption, it is well

known that RNA and protein levels are not always concordant and that post-transcriptional regula-

tion can result in divergent RNA and protein levels (Schwanhäusser et al., 2011). A few proteomics

studies have been conducted on FSHD muscle biopsies, but these early studies lack the depth nec-

essary to allow meaningful comparisons with the DUX4-induced transcriptome (Tassin et al., 2012;

Celegato et al., 2006; Laoudj-Chenivesse et al., 2005). Furthermore, given our recent discovery

that DUX4 induces the proteolysis of a key RNA-binding protein, UPF1 (7), we hypothesized that

paired measurements of RNA and protein levels might be particularly important in identifying

altered post-transcriptional gene regulation in DUX4-expressing cells. Hence, we set out to generate

reliable RNA- and protein-level measurements of DUX4-induced gene expression and, thereby, to

elucidate the extent of post-transcriptional gene dysregulation in DUX4-expressing cells.

We used our previously established and validated cell culture models of DUX4 expression

(Jagannathan et al., 2016) to conduct RNA-seq and Stable Isotope Labeling with Amino acids in

Cell culture (SILAC) coupled with quantitative mass spectrometry (Harsha et al., 2008). The resulting

data enabled us to measure DUX4-induced alterations in the transcriptome as well as protein levels

for ~4000 genes with high confidence. Comparison of the transcript-level and protein-level altera-

tions revealed three distinct patterns of expression for different subsets of genes: 1) concordant

changes in expression at the RNA and protein levels for many transcriptional targets of DUX4; 2)

post-transcriptional buffering of the expression of many genes, especially of those involved in stress-

response pathways; and 3) discordant gene expression changes at the RNA versus protein levels for

many genes, particularly those involved in RNA surveillance. Together, these findings highlight the

importance of measuring the expressed proteome in order to understand DUX4 biology and the

FSHD disease process fully.

Results

Determining protein-level alterations in DUX4-expressing cells through
quantitative mass spectrometry
In order to measure DUX4-induced changes to the cellular proteome, we conducted SILAC-based

mass spectrometry in two independent DUX4 expression systems (Figure 1A). We previously

showed that comparable gene expression profiles, which accurately capture the transcriptome of

FSHD cells, are produced when DUX4 is expressed either via a lentiviral vector or when an inducible

transgene is integrated into the genome of a myoblast cell line (Jagannathan et al., 2016). Here,

we used both of these expression systems to corroborate our results internally, thereby ensuring

that our proteomic data were robust with respect to choice of model system.

We first established the efficiency of SILAC labeling and determined appropriate cell culture con-

ditions and experimental timing in order to ensure near-complete labeling of proteins with heavy

isotopic arginine and lysine. To this end, we cultured immortalized MB135 myoblasts in SILAC label-

ing media for a week and subjected the total protein from labeled cells, as well as a 1:1 mix of

labeled to unlabeled cells, to mass spectrometry. Using the resulting mass spectra, we calculated

labeling efficiency in two ways. First, we quantified the relative abundance of heavy and light spectra

for several individual peptides and found that it showed a > 95% labeling efficiency (a representative

example is shown in Figure 1—figure supplement 1A). Next, we analyzed the proteome-wide dis-

tribution of log-transformed heavy to light ratios of peptides from both the heavy-only (Figure 1—

figure supplement 1B) and the heavy:light mixed samples (Figure 1—figure supplement 1C). The

distribution of heavy-to-light ratios was strongly skewed to the right in the heavy-only samples, indi-

cating robust labeling with the heavy amino acids. By contrast, the heavy:light mixed sample yielded

a distribution centered roughly around zero, as expected. On the basis of these data, we proceeded
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Figure 1. Quantitative mass spectrometry of DUX4-expressing cells. (A) Schematic of the experimental set up and the subsequent data analysis steps

used to measure protein fold change in cells expressing vDUX4 or iDUX4. (B) Histogram of normalized, log2-transformed DUX4/Control ratios for all

peptides mapping to ZSCAN4, a DUX4 target gene (top panels), and for RPL15, a housekeeping gene (bottom panels), following 24 and 36 hr of

vDUX4 expression. (C) Histogram of normalized, log2-transformed DUX4/Control ratios for all peptides mapping to ZSCAN4, a DUX4 target gene (top

Figure 1 continued on next page
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with the labeling conditions and increased the labeling time even further (to three weeks) in order to

achieve maximal SILAC labeling of the MB135 myoblasts.

MB135 myoblasts that had been adapted to light or heavy SILAC media for 3 weeks were trans-

duced with lentivirus carrying DUX4 (vDUX4) or GFP (vGFP) expression constructs. Samples were col-

lected 24 hr and 36 hr post-transduction. In an independent experiment, MB135 cells carrying a

doxycycline-inducible DUX4 transgene (iDUX4; Jagannathan et al., 2016) were adapted to SILAC

media for 3 weeks before DUX4 expression was induced with 1 mg/ml of doxycycline for 14 hr in two

replicates carrying heavy and light SILAC labels. Paired controls with no treatment were also col-

lected with both heavy and light labels. Total protein from cells expressing DUX4 were mixed with

an equal amount of total protein from cells without DUX4 expression containing the opposite SILAC

label to generate samples that were then subjected to mass spectrometry.

Peptide-spectrum matches (PSMs) with quantified heavy to light ratios were subject to thorough

screening for quality (e.g., filtering out single-peak spectra and spectra without unique

mapping; Figure 1A; see Materials and methods for further details). A histogram of log-transformed

DUX4 to Control abundance ratios (log2 (DUX4/Control) ratio) of peptides mapping to a DUX4 tar-

get gene, ZSCAN4, from both vDUX4 and iDUX4 datasets showed highly skewed log2 (DUX4/Con-

trol) ratio, consistent with significant upregulation of the protein upon DUX4 expression (Figure 1B–

C). By contrast, plotting the log2 (DUX4/Control) ratio of all individual peptides mapping to the

housekeeping gene RPL15 showed that the ratio is centered around zero (Figure 1B–C), as would

be expected for a gene with no differential expression upon DUX4 induction. These example plots

illustrate the strong agreement between the expected and observed protein fold change values

determined by SILAC mass spectrometry. Moreover, of the 65 genes identified by Yao et al. (2014)

as potential FSHD biomarkers on the basis of transcriptome analysis of FSHD patient samples,

8 were quantified in the vDUX4 proteomics study and 25 were quantified in the iDUX4 proteomics

study and all of these genes show high induction at the protein level (Figure 1D,E). Note the lower

number of peptides (and hence quantified proteins) from the vDUX4 sample, which indicates the

lower depth of this dataset and yet yields fold changes that are highly consistent with those from

the higher-depth iDUX4 dataset.

Assessing the concordance of fold change in RNA- and protein-
expression
Next, using the iDUX4 dataset, we performed peptide to protein summarization by measuring the

median heavy/light ratios of all of the peptides mapping to a certain protein in both label-

swap replicates to obtain gene-level log2 (DUX4/Control) ratios (Figure 1A and Figure 1—figure

supplement 1D–E; Supplementary file 1). After filtering out genes that were only observed in one

of the two label-swap replicates, we obtained quantitative proteomics information for 4005 genes,

3961 of which also had a corresponding RNA-seq measurement (Figure 2A; RNA-seq data previ-

ously reported by Jagannathan et al., 2016). The lower number of genes quantified by proteomics

compared to RNA-seq is expected as proteomics is known to have lower sensitivity than RNA-seq.

To compare the RNA and protein expression level changes upon DUX4 expression qualitatively,

we assessed the overlap of genes with an expression change of 4-fold or above. Among genes that

are upregulated (>2 log2 fold change), the concordance between RNA and protein was roughly 40–

50%, whereas similarly downregulated genes show very little concordance (Figure 2A). To obtain a

Figure 1 continued

panels), and for RPL15, a housekeeping gene (bottom panels), in the two label-swap replicates of iDUX4 expression. (D) Box plot of normalized, log2-

transformed DUX4/Control ratio for peptides corresponding to the FSHD biomarker transcripts identified by Yao et al. (2014) in the vDUX4 dataset.

Each dot refers to an individual peptide that was quantified and the color represents the time point of vDUX4 expression (24 hours in blue and 36 hours

in purple). (E) Box plot of normalized, log2-transformed DUX4/Control ratio for peptides corresponding to the FSHD biomarker transcripts identified by

Yao et al. (2014) in the vDUX4 dataset. Each dot refers to an individual peptide that was quantified and the color denotes replicate 1 (red) or replicate

2 (purple) of iDUX4 expression.

DOI: https://doi.org/10.7554/eLife.41740.002

The following figure supplement is available for figure 1:

Figure supplement 1. Demonstration of peptide to protein summarization for two candidate genes.

DOI: https://doi.org/10.7554/eLife.41740.003
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more quantitative measure of concordance, we generated a scatter plot of the RNA versus protein

fold change for the 3961 genes (Figure 2B). We found a reasonable level of correlation between

these values with a Pearson’s correlation coefficient, r, of 0.51 (p-value<2.2e-16).

To assess if other pathways are affected similarly at the RNA versus protein levels, we conducted

a Gene Ontology (GO) analysis searching for genes that are up- or downregulated at the RNA and

protein levels (Figure 2C). Surprisingly, we observed that the pathways that are affected at the RNA

versus protein levels are quite distinct. Transcript level changes occur in genes that are involved in

transcription and mRNA processing, whereas protein-level changes impact pathways including

the humoral immune response, proteolysis and exocytosis. The exocytosis pathway was not impli-

cated in any of the previous studies of DUX4 gene expression, so we sought to examine this phe-

nomenon further by imaging the Golgi apparatus, which is the source of exocytotic vesicles in the

cell (Rodriguez-Boulan and Müsch, 2005). We found that DUX4-expressing cells showed severe

fragmentation of their Golgi apparatus, which could be an indicator of a perturbation in the cellular

secretory pathways (Bexiga and Simpson, 2013) (Figure 2D). As not every cell in the DUX4-induced
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condition showed fragmented Golgi apparatus, we also quantified the percentage of cells with

robust DUX4 expression at 12 hr and 24 hr post-induction using immunostaining. We found the per-

centages of cells with DUX4 expression to be comparable to the percentage of cells with frag-

mented Golgi (Figure 2E).

Taken together, these results demonstrate that analyzing the protein measurements may give us

insights that were not discernable in the transcriptome fold-change analysis performed in earlier

studies.

Post-transcriptional buffering of stress-response genes may exacerbate
DUX4 toxicity
Although many of the genes that are induced at the transcript level are largely also induced at the

protein-level, a subset of genes showed no change in their protein level while their transcripts were

up- or downregulated to a significant degree (678 genes, shaded blue in Figure 3A), indicating

post-transcriptional buffering of the protein levels. Most notably, several housekeeping genes that

respond to protein folding stress or dsRNA-induced stress showed transcriptional upregulation with

minimal protein-level upregulation (Figure 3B).

Given that both unfolded protein and dsRNA-induced stresses converge in the phosphorylation

of eIF2a and lead to translation inhibition (Cláudio et al., 2013), we asked whether the timing of

the transcription of various stress-response genes coincideswith their translational downregulation.

We found that HSPA5, a prominent marker of the unfolded protein response pathway

(Oslowski and Urano, 2011), shows transcriptional upregulation during a time period that tempo-

rally coincides with eIF2a phosphorylation and the reduced incorporation of [35 S]-labeled methio-

nine, a proxy for bulk translation efficiency (Figure 3C–E). These data demonstrate that translation

inhibition caused by various cellular stresses and the resulting post-transcriptional buffering prevents

DUX4-expressing cells from mounting a robust stress response.

Post-transcriptional modulation of RNA quality control pathway by
DUX4
Next, we focused our analysis on the subset of genes that showed significant changes at the protein

level with either no change or a change in the opposite direction in their transcript abundance (198

genes shown as ‘gold’ circles in Figure 4A). Pathway analysis did not reveal any significant trends

among these genes. So instead, we decided to focus on one of the pathways that we have previ-

ously shown to be post-transcriptionally modulated, the nonsense-mediated RNA decay (NMD)

pathway (Feng et al., 2015).

A diagram showing RNA- versus protein-level changes in various components of this pathway

demonstrates substantial post-transcriptional regulation in this pathway (Figure 4B). Many of these

genes, including UPF1, UPF2, UPF3B and XRN1, showed downregulation at the protein level. The

downregulation of XRN1 is of particular interest as it is the 5’�3’ exonuclease that degrades NMD

targets upon cleavage by the endonuclease, SMG6 (Palacios, 2013). Moreover, SMG6 too is down-

regulated to a log2 fold change of �4.7, although it is only detected as a single peptide and hence

was filtered out of our analysis. Thus, DUX4-induced NMD inhibition appears to be a result of

the post-transcriptional downregulation of multiple key players of the NMD pathway, which explains

the severity of NMD inhibition in DUX4-expressing cells.

Post-transcriptional downregulation of a gene can be achieved via two means: reduced transla-

tion or increased protein degradation. We have previously shown that DUX4 induces proteasome-

mediated degradation of UPF1 (Feng et al., 2015). Hence, we asked whether DUX4 affects known

components and regulators of the ubiquitin proteasome. A scatterplot of all ubiquitin proteasome

regulators shows a change in the expression of several such genes, one or more of which may under-

lie the rapid degradation of UPF1 (Figure 4C). Further studies are needed to reveal the precise

molecular mechanism behind this regulatory pathway and its downstream consequences. In sum-

mary, we propose that post-transcriptional gene regulation plays a critical role in inhibiting NMD

and in perturbing the proteostasis in DUX4-expressing cells, and thus may underlie key aspects of

FSHD pathology (Figure 4D).
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Finally, in order to enable researchers and patients in the FSHD community to access the data

generated in this study, we developed a web tool for easy visualization of these data (screenshot

shown in Figure 5). This tool can be freely accessed at https://dynamicrna.shinyapps.io/dataviz/.
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Figure 4. DUX4 induces post-transcriptional gene regulation. (A) Scatter plot of log2 fold change in RNA levels (DUX4/control) versus log2 fold change

in protein levels (DUX4/control). The post-transcriptional regulation of genes results in drastic changes in protein level without major changes in RNA

levels (highlighted in gold). (B) Schematic representation of RNA- and protein-level changes for the genes involved in mRNA surveillance. Colors

represent a heat map of actual fold changes in RNA levels (top) and in protein levels (bottom). Proteins with fewer than two quantified peptides are

outlined by dotted lines. (C) Scatter plot of log2 fold change in RNA levels (DUX4/control) versus log2 fold change in protein levels (DUX4/control) for

genes in the ubiquitin proteasome pathway. (D)Model for DUX4-induced post-transcriptional gene regulation.
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Discussion
Most of the highly induced DUX4 transcriptional targets are germline and early embryonic genes

that are normally never expressed in adult muscle (Geng et al., 2012). So, it is possible that despite

being expressed at the transcript level, such genes may be translated poorly and/or be degraded

rapidly upon translation because of the lack of cell-type chaperones or other factors. Here, we used

quantitative mass spectrometry in two different cell culture models of FSHD to demonstrate that

DUX4-induced transcripts are efficiently translated into stable proteins in muscle cells. We demon-

strated previously that our vDUX4 and iDUX4 systems accurately capture the transcriptional program

of FSHD cells (Jagannathan et al., 2016), so it is reasonable to assume that DUX4-induced tran-

scripts are similarly translated into stable proteins in FSHD muscle. However, further work is required

to confirm this definitively. Similarly, our data strongly motivate focused investigation of these

DUX4-induced proteins to test their utility as potential FSHD biomarkers in relevant clinical samples

(Yao et al., 2014).

Next, we asked whether the changes in the DUX4 proteome are largely reflective of the changes

to the transcriptome. We found that this is not the case. Although there is a positive correlation

between these measurements (Pearson’s correlation coefficient of 0.51), hundreds of genes deviate

from this trend. GO analysis of the most differentially expressed genes at the transcript versus pro-

tein levels revealed RNA splicing and processing as the prominent categories impacted at the tran-

script level, whereas protein-level changes impacted an entirely different set of pathways. We take

these results as an indication that the transcriptome-level analysis paints an incomplete picture of

DUX4 biology, which should be complemented with proteome-level analysis to provide a thorough

understanding of how DUX4 misexpression causes FSHD.

We next pursued the various mechanisms by which protein-level changes deviate from the corre-

sponding transcriptomic changes. We found that genes that are induced by double-

stranded RNA (dsRNA) and unfolded protein stress are transcriptionally induced, but translationally

buffered as a result of the translational repression that accompanies activation of these stress-

response pathways. Motivated by this result, we hypothesize that DUX4-expressing cells are unable

to mount a robust stress response, despite inducing the transcripts necessary to alleviate stress. We

Figure 5. Tool allowing easy access to the data generated in this study. Screenshot of the Shiny web server showing a sample analysis of the RNA- and

protein- level data for a DUX4 transcriptional target, ZSCAN4.
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also show that multiple proteins in RNA surveillance pathways, including UPF1 and XRN1, are down-

regulated at the protein level, which may explain the drastic reduction in RNA quality control capac-

ity that we observed in DUX4-expressing cells. From the proteomics data, we identified many genes

that are involved in the ubiquitin proteasome pathway whose mis-regulation could alter protein sta-

bility. These genes may serve as a starting point for further investigation of how DUX4, which is best

known as a transcriptional activator, induces widespread alterations in protein turnover.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Homo sapiens)

MB135 PMID: 28171552

Cell line
(Homo sapiens)

MB135-iDUX4 PMID: 28171552

Antibody Rabbit anti-
GM130 antibody

Bethyl
Laboratories Inc.

Cat # A303-402A-T (1:250)

Antibody Rabbit anti-
Dux4 antibody

Abcam Cat # ab124699 (1:500)

Commercial
assay, kit

ActinRed 555
ReadyProbes Reagent

ThermoFisher
Scientific

Cat # R37112

Chemical
compound, drug

DAPI Sigma Cat # D9542 (1:1000)

Chemical
compound, drug

L-LYSINE:2HCL
UNLABELED

Cambridge Isotope
Laboratories Inc.

Cat # ULM-8766-0.1

Chemical
compound, drug

L-ARGININE:HCL
UNLABELED

Cambridge Isotope
Laboratories Inc.

Cat # ULM-8347-0.1

Chemical
compound, drug

L-LYSINE:2HCL
(13C6, 99%; 15N2, 99%)

Cambridge Isotope
Laboratories Inc.

Cat # CNLM-291-H-0.05

Chemical
compound, drug

L-ARGININE:HCL
(13C6, 99%; 15N4, 99%)

Cambridge Isotope
Laboratories Inc.

Cat # CNLM-539-H-0.05

Other Ham’s F12 for SILAC Pierce Cat # 88424

Other Dialysed FBS for SILAC Pierce Cat # 88212

Cell culture and SILAC labeling
Proliferating human myoblasts (MB135) were cultured in F10 medium (Gibco/Life Technologies) sup-

plemented with 20% fetal bovine serum (Thermo Scientific), 10ng bFGF (Life Technologies), 1mM

dexamethasone (Sigma) and 50U/50mg penicillin/streptomycin (Life Technologies). We routinely con-

firmed the identity of these cells by PCR to amplify marker genes (DUX4 and/or Puromycin-resis-

tance gene) as well as by tracking key morphological features that are characteristic of myoblast

cells. These cells also tested negative for mycoplasma contamination. Cells were labeled in SILAC

media containing heavy lysine (Lys8) and arginine (Arg10) for 3 weeks before the DUX4 induction

experiments were carried out. To induce DUX4 expression in the MB135 iDUX4 cells, 1mg/ml of

doxycycline was added for 8 or 14 hr, as indicated. For viral DUX4 expression, MB135 cells were

transduced with lentivirus carrying DUX4 coding sequence under a hPGK promoter in the presence

of polybrene.

Gel slice digestion
Total RNA and protein were extracted from whole cells using TRIzolRT reagent (Ambion) following

the manufacturer’s instructions. 50 mg of total protein was subjected to SDS PAGE using a 4–15%

bis-TRIS gel. The gel was stained using GelCode blue (Pierce) according to the manufacturer’s

instructions, destained overnight in ultrapure water and the entire lane containing the protein was

cut into 16 fractions using a GelCutter (Gel company Inc.). Individual gel slices in 1.5 mL tubes
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(Eppendorf) were consecutively washed with water and incubated with 25mM ammonium

bicarbonate in 50% acetonitrile for 2 hr. The gel pieces were dehydrated with acetonitrile, and the

dried gel slices were reduced by covering them with 10 mM dithiothreitol in 100 mM ammonium

bicarbonate and heating them at 56˚C for 45 min. The solution was removed and discarded. The gel

slices were alkylated by covering them with a solution of 50 mM iodoacetamide in 100 mM ammo-

nium bicarbonate and incubating in the dark at ambient temperature for 30 min. The solution was

removed and discarded. The gel slices were dehydrated with acetonitrile, then washed with 100 mM

ammonium bicarbonate for 10 min. The solution was removed, discarded and the gel slices were

dehydrated once again with acetonitrile. After removing acetonitrile, the gel slices were then

hydrated with 5 ng/uL sequencing-grade trypsin (Promega) in 50 mM ammonium bicarbonate and

digested overnight at 37˚C on an orbital shaker. Following digestion, the supernatants were col-

lected, and the gel slices were washed with 0.1% trifluoroacetic acid, and after 30 min an equal vol-

ume of acetonitrile was added followed by washing for an additional 1 hour. The original digestion

supernatant and the wash for a single sample were combined into a single tube and dried by vac-

uum centrifugation. The digestion products were desalted using Ziptips (Millipore) according to the

manufacturer’s instructions, eluted with 70% acetonitrile/0.1% trifluoroacetic acid, and dried by vac-

uum centrifugation.

Mass spectrometry
The desalted material was resuspended in 20 mL of 2% acetonitrile in 0.1% formic acid, and 18 mL

was analyzed using one of two LC/ESI MS/MS configurations. The first configuration consisted of an

Easy-nLC II (Thermo Scientific) coupled to a Orbitrap Elite ETD (Thermo Scientific) mass spectrome-

ter using a trap-column configuration as described (Licklider et al., 2002). A trap of 100 mm � 20

mm packed with Magic C18AQ (5-mm, 200 Å resin; Michrom Bioresources) packing material was

used for in-line desalting and a column of 75 mm � 250 mm packed with C18AQ (5-mm, 100 Å resin;

Michrom Bioresources) was used for analytical peptide separations. Chromatographic separations

were carried out using a 60-minute gradient from 5% to 35% solvent B (solvent A: 0.1% formic acid,

solvent B: 0.1% formic acid in acetonitrile) at a flowrate of 300 nL/min. The analytical column temper-

ature was maintained at 40˚C. The Orbitrap Elite instrument was operated in the data-dependent

mode, switching automatically between MS survey scans in the Orbitrap (AGC target value 1E6, res-

olution 240,000, and maximum injection time 250 ms) and collision induced dissociation (CID) MS/

MS spectra acquisition in the linear ion trap (AGC target value of 10,000 and injection time 100 ms).

The 20 most intense precursor ions from the OrbiTrap full scan were each consecutively selected for

fragmentation by CID in the linear ion trap using a normalized collision energy of 35%. Ions of +2

and +3 charge states were selected for MS/MS and selected ions were dynamically excluded for 30

seconds. The second configuration consisted of an Easy nanoLC 1000 (Thermo Scientific) HPLC con-

nected to an OrbiTrap Fusion (Thermo Scientific) mass spectrometer. In-line chromatographic sepa-

rations (no trap column) were carried out using a 75 mm � 400 mm column packed with Magic

C18AQ (5-mm, 100 Å resin; Michrom Bioresources) packing material at a flowrate of 300 nL/min.

Chromatographic elution consisted of a 90-minute gradient from 3% to 27% solution B and the col-

umn temperature was maintained at 40˚C. The OrbiTrap Fusion was operated in the 2 sec ’top

speed’ data dependent acquisition mode with MS survey scans in the OrbiTrap at least every 2

sec (AGC target value 4E5, resolution 120,000, and maximum injection time of 50 ms). Quadrupole

isolation was set to 1.6 full width at half maximum (FWHM) and higher energy collision dissociation

(HCD) was used for fragmentation at a collision energy of 28%. MS/MS detection was carried out in

the linear ion trap set at rapid scan speed (injection time of 250 ms and AGC target of 10E2). Posi-

tively charged ions from 2 to 6 were selected for MS/MS and selected ions were dynamically

excluded for 30 sec.

Data analysis and statistical methods
Qualitative and quantitative data analysis were performed using Proteome Discoverer 2.1 (Thermo

Scientific). The data were searched against a human UniProt database (downloaded 11-04-16) that

was appended with protein sequences from the common Repository of Adventitious Proteins (cRAP;

www.thegpm.org/crap/) and in silico translation products of noncanonical transcript isoforms stabi-

lized as the result of NMD inhibition. In downstream analyses, peptides that only mapped to NMD
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targets were not considered any further in the current study and will be pursued in a future investi-

gation. Searches were conducted with the trypsin enzyme specificity. The precursor ion tolerance

was set to 10 ppm and the fragment ion tolerance was set to 0.6 Da. Variable modifications were set

for oxidation on methionine (+15.995 Da), carbamidomethyl (+57.021 Da) on cysteine, and acetyla-

tion (+42.010 Da) on the N-terminus of proteins. Heavy SILAC amino acids for lysine (+8.014 Da) and

arginine (10.008) were also accounted for in the analysis as variable modifications. All search results

were evaluated by Percolator for false discovery rate (FDR) evaluation of the identified peptides.

Peptide identifications were filtered to a peptide FDR of 1%.

The peptide-spectrum matches (PSMs) and the corresponding quantification data were then

exported as a tab-delimited text file from Proteome Discoverer 2.1, and all downstream data analy-

sis was conducted using the R statistical programming language. The Custom R script (Source Code

File 1) to reproduce the analyses described above and figures in this manuscript is deposited in

github (Jagannathan et al., 2019; copy archived at https://github.com/elifesciences-publications/

2019-eLife-jagannathan_et_al). Briefly, we filtered PSMs to remove the spectra carrying the following

quality flags assigned by Proteome Discoverer – ’Inconsistently labeled’, ’Indistinguishable channels’,

’No quantitative values’, ’Not unique’, ’Redundant spectra’, ’Single peak spectra’, and ’Excluded by

method’ – all of which represent poor quality spectra. Next, we removed peptides that failed to

map to a gene, and peptides mapping to genes in the cRAP database or to uncharacterized genes.

We then assigned the median peptide fold change within an experiment as the summarized protein

fold change value.

Upon comparing the gene-level fold changes obtained from four different samples, we noticed a

strong correlation between the two viral replicates (Pearson’s r = 0.81), as well as the data from

iDUX4 replicate 1 and both vDUX4 datasets (Pearson’s r = 0.79 and 0.77). The iDUX4 replicate 2, in

which we swapped the isotopic labels used for the control and DUX4 samples, however, showed

poor correlation with the three other samples because of a small set of proteins (103 proteins; 2.6%

of total) that did not label efficiently. Proteins that do not label efficiently result in apparent anticor-

relation between label-swap samples. This issue, wherein a small subset of proteins does not label

efficiently, is a well-known problem in SILAC experiments (Park et al., 2012). Rather than ignoring

this subset of proteins, which would require the imposition of potentially arbitrary thresholds, we

instead followed the standard SILAC analysis procedure of taking the median value of H/L ratio

across the two iDUX4 replicates as the final iDUX4 H/L ratio (Park et al., 2012; Ong and Mann,

2006). This procedure preserves the H/L ratio for proteins that labeled efficiently (the vast majority

of the proteome) while bringing the H/L ratio for proteins that did not label efficiently to approxi-

mately 1 (corresponding to no measurable change). We then calculated p-values for the fold change

calculated for the combined iDUX4 samples using a bootstrap approach. For a protein with n pepti-

des whose H/L ratios were used to calculate protein fold change, we calculated the probability that

n peptides chosen randomly out of all measured peptides would yield a similar fold change by

chance. To this end, we generated a null distribution for each protein as follows. First, the same

number of H/L ratios as the number of peptides quantified for that protein were randomly chosen

from the set of all calculated peptide-level H/L ratios (n=229,558). With these randomly chosen H/L

ratios, a fold change was calculated by computing the median. This process was repeated 1,000

times to generate the null distribution of H/L ratios for that protein. Using this null distribution, a p-

value was calculated using a two-tailed Z test.

Gene Ontology analysis
GO analysis was performed via the Overrepresentation Enrichment Analysis method using WebGes-

talt server (pmid:15980575; www.webgestalt.org). One of the GO categories identified as enriched

in this analysis was skin development, which we subsequently removed from Figure 2C as many of

the genes that contribute to this GO category were extracellular proteins including keratins that

could be environmental contaminants.

Immunofluorescence microscopy
Cells were permeabilized with PBS containing 0.1% Triton X-100 for 5 min at room temperature and

rinsed three times in PBS. Primary antibody against GM130 (Bethyl Laboratories, Cat # A303-402A-

T) was diluted 1:200 in PBS and incubated for 1 hr at room temperature. After three washes in PBS,
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secondary anti-Rabbit TRITC (Jackson ImmunoResearch, cat # 711-025-152) diluted 1:400 was added

and incubated for 45 min at room temperature. Cells were washed three times in PBS with the

nuclear counterstain DAPI included in the final wash. Images were collected on a Cytation 5 multi-

mode reader (BioTek) and analyzed using GenPrime software (BioTek).
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