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Abstract

We performed benchmarks of phylogenetic grammar-based ncRNA gene prediction, experimenting with eight different
models of structural evolution and two different programs for genome alignment. We evaluated our models using
alignments of twelve Drosophila genomes. We find that ncRNA prediction performance can vary greatly between different
gene predictors and subfamilies of ncRNA gene. Our estimates for false positive rates are based on simulations which
preserve local islands of conservation; using these simulations, we predict a higher rate of false positives than previous
computational ncRNA screens have reported. Using one of the tested prediction grammars, we provide an updated set of
ncRNA predictions for D. melanogaster and compare them to previously-published predictions and experimental data. Many
of our predictions show correlations with protein-coding genes. We found significant depletion of intergenic predictions
near the 3’ end of coding regions and furthermore depletion of predictions in the first intron of protein-coding genes. Some
of our predictions are colocated with larger putative unannotated genes: for example, 17 of our predictions showing
homology to the RFAM family snoR28 appear in a tandem array on the X chromosome; the 4.5 Kbp spanned by the
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predicted tandem array is contained within a FlyBase-annotated cDNA.
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Introduction

The number of non-coding RNAs (ncRNAs) in eukaryotic
genomes is one of the pressing open questions of genomics. The
upper bound on this number is believed to be in the tens of
thousands [1]. The biological significance of ncRNA is supported
by several recently-discovered classes of RINA that have function at
the transcript (as opposed to protein) level. These include
independently-transcribed gene families such as microRNAs
(miRNAs) [2,3], small nucleolar RNAs (snoRNAs) [4], and
piwiRNAs [5], as well as functional RNA elements in protein-
coding genes such as riboswitches [6], zipcodes [7] and splicing
regulators [8]. Microarray transcriptome surveys [9], as well as
whole-genome bioinformatics screens, turn up thousands of
candidate ncRNAs [10-13].

One of the comparative-genomics approaches used to find non-
coding RNAs involves stochastic context-free grammars (SCFGs)
[14,15]. In particular, phylogenetic SCFGs or “phylo-grammars”
have been used to scan multiple genome alignments for ncRNAs
[16]. Phylo-grammars are powerful, parameter-rich models of the
spatial and temporal structure of evolving genomic features. As
well as for de novo ncRNA annotation, they have been used to
detect protein-coding genes [17,18], conserved regions [19] and
fast-evolving ones [20]. They simultaneously model several aspects
of features under consideration, including the sequential organi-
zation (e.g. nesting of base-pairs and length distributions of stems
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and loops) and base composition of genomic sequence, the rates of
point substitution at individual sites and covariant substitution at
functionally coherent groups of sites (such as base-pairs or codons),
and the underlying phylogeny, including both branch lengths and
tree topology. A particular strength of the phylo-grammar
framework is the ease with which it is (theoretically) possible to
refine the models, adding new components to better model target
features [21] or altering the parametric structure of the
substitution rate matrices, a common practice when training data
are sparse [22-24].

Although the framework is flexible, implementing a phylo-
grammar is difficult and effectively parameterizing one is even
harder. Consequently, while there have been recent comparative
studies of non-phylogenetic SCFGs for secondary structure
prediction [21], there have been no such comparative studies of
phylo-SCFGs for gene detection, despite two gene-predicting
phylo-SCFGs having been published [16,25].

We previously described a general-purpose software package for
prototyping, parameter-fitting and alignment annotation using
phylo-grammars [26]. This program, xrate, allows the grammar
structure to be specified in a configuration file; the parameters can
then be automatically estimated from training data and the
parameterized phylo-grammar used to annotate new alignments.
This program implements a wide variety of models and can be
used for measurement of evolutionary rates, or prediction of RNA
(or protein) secondary structure.
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In this paper, we report the first use of xrate for ncRNA gene
prediction. Estimating false-positive rates using simulated data, we
evaluated our methods on the twelve genome sequences in the
Drosophila species clade [27,28]. There are 942 annotated ncRNAs
(including both independent transcriptional units and regulatory
elements within genes) in D. melanogaster (FlyBase release 5.4) and
several whole-genome transcriptomics studies [9,29].

Our method involves breaking a multi-genome alignment into
300-nucleotide windows (with 100-nucleotides overlap between
adjacent windows), scanning each window with a phylo-grammar
to find the highest-scoring potential structured RNA within each
window and selecting predictions above a certain score cutoff.
Starting with the PFOLD phylo-grammar of [30], we test several
refinements to the method: new parameter-fitting algorithms,
more biophysically-realistic RNA structure models, better null
models for neutrally-evolving intergenic sequence, variations in
msertion and deletion rates and two different genome alignment
algorithms.

Using one of the grammars, we scan a multiple alignment of
twelve Drosoplila  genomes for novel ncRNAs. As well as
reproducing many of the predictions of earlier bioinformatics
screens in Drosophila [11,13,28], our screen predicts numerous
novel structured RNAs, lending support to the hypothesis that
eukaryotic genomes are dense with ncRNAs. However, the
simulation procedure that we use (which includes locally conserved
regions that are not ncRINAs) suggests that false positive rates for
ncRNA prediction are higher than previously reported. We find
many correlations between our predictions and coding regions in
D. melanogaster, including depleted numbers of predicted intergenic
ncRNAs near the 3" end of coding regions as well as fewer
predictions in the first intron of known protein-coding genes than
expected by chance. Our methods point the way to further
evidence-based evaluations of whole-genome bioinformatics
screens.

Results

All of our results may be accessed at the following URL: http://
biowiki.org/ TwelveFlyScreenPredictions

Design of ncRNA gene model

We tested several models for prediction of structured ncRNAs.
Each model contained two “submodels”: a ncRNA model to model
the structural evolution of the ncRNA, and a null model to model
the neutral evolution of the remaining sequence in the window.

We evaluated the performance of ncRNA gene models using test
datasets of true positives constructed by extracting sub-alignments of
annotated ncRNAs in FlyBase Release 5.4 of the D. melanogaster
genome from multiple alignments of twelve Drosophila genomes
(melanogaster, pseudoobscura, sechellia, simulans, yakuba, erecta, ananassae,
persimilis, willistoni, mojavensis, virnlis and grimshaws; see Methods for
details) [27]. In contrast to thermodynamic methods, which
explicitly model RNA structures including loop length and base-
stacking effects, phylo-grammar-based gene models primarily score
candidate structured sequence based on the statistical evolutionary
signal that the structure leaves in the multiple alignment, rather than
the energetics of the structure itself. Our model evaluation
procedure is primarily a testbed for selecting an appropriate
substitution model for stems, loops and neutrally-evolving sequence
(see “Patterns of nucleotide substitution in non-coding RNA”). To
help reduce bias, we created four different test sets, one of (highly-
conserved) tRINAs, one of miRINAs, one of snRNAs, snoRNAs and
other RNAs, and one of all non-ribosomal RNAs. We excluded
rRINAs from our analysis because they are unaligned.
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In each case, the ncRNA model was derived from the PFOLD
model [30], a lightweight grammar known to perform well at
single-sequence structure prediction [21]. This grammar (and all
the derivatives that we tested) are capable of modeling the salient
features of ncRNA secondary structure (including hairpins, bulges,
interior loops, and multi-branch loops). The PFOLD rate
parameters were estimated approximately, by counting mutations
in the Bayreuth tRNA database [31] and the European large
subunit rRNA database [32]. The counting technique used by
Knudsen & Hein is likely to under-count certain mutations, and is
an approximation to a true Maximum Likelihood (ML) estimate.
Our first derivative model used the same grammar structure as
PFOLD, but with rate parameters independently re-estimated
from similar alignment data, using xrate’s EM algorithm, which
gives a closer approximation to ML.

Several of our derivative ncRNA models include more detailed
modeling of RNA structure. The ClosingBp grammar (which we
eventually chose for our whole-genome screen) takes account of
the substitution patterns of the loop-closing base-pair at the end of
a stem, which frequently differ from the patterns observed within
the stems [33]. The SymmetricStemGaps, NoStemGaps, Ga-
pLinks and GapSub grammars included various models for indel
events in stem and loop regions. These ranged from allowing
indels in base-paired regions only if both bases in a pair were
deleted (SymmetricStemGaps), to prohibiting indels entirely in
base-paired regions (NoStemGaps), to explicit probabilistic models
for gaps, either as a birth-death process (GapLinks) or a
substitution-based process (GapSub).

In all cases, the null model was trained on a random 1% of the
PECAN Drosophila alignments. In all but one case, the null model
was a single-nucleotide “point substitution” model that was
reversible and strand-symmetric (but otherwise fully general).
The exception was the Dinuc model, where we allowed the
substitution rates in the null model to be “context-dependent” (so
the substitution patterns at a given site depend on the neighboring
sequence). Previous studies of codon-emitting phylogenetic
Hidden Markov Models for protein-coding gene prediction have
shown that such phylo-HMMs tend to over-predict exons unless
context-dependent substitution effects are included in the null
model [18]. It is hypothesized that this is due to the implicit
inclusion of neighbor-dependent substitution effects in the codon
evolution model; unless those effects are included in the null model
too, the codon model has an “unfair” advantage.

Figure 1 shows ROC curves for the grammars we tested, using
various subsets of the annotated D. melanogaster ncRNAs. Detailed
specifications for the grammars are as follows:

1. Pfold: original PFOLD grammar, including the original rate
parameters; single-nucleotide null model of intergenic sequence
(context-independent).

2. Dinuc: original PFOLD grammar, including the original rate
parameters; dinucleotide null model (nearest-neighbor context
dependence).

3. PfoldRetrained: original PFOLD grammar, but with rates re-
estimated from the mix80 dataset using xrate’s EM
algorithm. Single-nucleotide null model.

4. ClosingBp: mix80-trained rates; closing base-pair of loops can
optionally use a separate substitution rate matrix. Single-
nucleotide null model.

5. SymmetricStemGaps: original PFOLD grammar, including
the original rate parameters; gaps in stems permitted only if
both sites of a base-pair are gapped. Single-nucleotide null
model.
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Figure 1. ROC curves comparing ncRNA gene prediction performance on various subsets of D. melanogaster ncRNAs. The ROC curves
on the left used simulated data generated by gsimulator, which models neutrally evolving DNA (i.e., loosely speaking, intergenic regions). The ROC
curves on the right used simulated data generated by simgenome, which additionally includes conserved signals such as protein-coding exons (i.e.
it models both intergenic and gene regions). Both simulated datasets were re-aligned with PECAN prior to gene-prediction. Each row represents a
different subset of true D. melanogaster ncRNAs: the top row includes all ncRNAs, the second row rRNA only, the third row miRNA only, and the
bottom row includes snRNAs, snoRNAs and other “small” families (excluding tRNA and rRNA). We tested several prediction grammars including
“Pfold”, based on the original PFOLD grammar [30]; “PfoldRetrained”, a version of PFOLD reparameterized from the mix80 dataset [38]; “Dinuc”, a
derivative of PFOLD with a dinucleotide null model; “ClosingBp”, a derivative of PFOLD that explicitly models the closing basepair statistics of
loops; “SymmetricStemGaps”, a derivative of PFOLD that excludes deletions of only one half of a basepair; “NoStemGaps”, an even stricter derivative
of PFOLD that excludes gaps in stems altogether; “GapLinks”, a PFOLD-derivative that approximately models gaps as a birth-death process;
“GapSub”, a PFOLD-derivative that approximately models gaps as a substitution process; and “EvoFold”, the grammar used by the program
EvoFold [10]. The horizontal axis (false positive rate) is plotted logarithmically, so as to reveal the behavior in the low-false-positive regime, which is
primariy of interest (the left-hand side of the plots). Note that these screens were performed on aligned genome data, and in particular, note that not
all of the genome is contained within such alignments. Our procedure can only discover ncRNAs that are contained within one of the aligned regions.
Since some of the D. melanogaster ncRNAs are not contained within the PECAN alignments, these ncRNAs are never discovered; hence, the

sensitivity never reaches 1 in these curves (so they are non-standard ROC curves in that sense).

doi:10.1371/journal.pone.0006478.9g001

6. NoStemGaps: original PFOLD grammar, including the
original rate parameters; no gaps allowed in stems. Single-
nucleotide null model.

7. GapLinks: mix80-trained rates; approximate birth-death or
“links” model [34] for runs of gaps in stems, loops and
intergenic sequence. Single-nucleotide null model.

8. GapSub: mix80-trained rates; gaps are treated as a fifth
character in both ncRNA and intergenic sequence [35]. Single-
nucleotide null model.

9. EvoFold: the ncRNA grammar used by the program EvoFold
[10]; single-nucleotide null model of intergenic sequence
(context-independent).

Several of these grammars model features which, to our
knowledge, have not previously been used for de novo ncRNA
annotation, including closing-base-pair statistics, strict stem
conservation and explicit models of the insertion and deletion
process.

We used two different methods for generating simulated decoy
alignments in order to estimate the false positive rate. These
methods were gsimulator, which essentially generates intergenic
DNA, and simgenome, which generates signals like exons as well
as “neutral” intergenic sequence [36]. If we knew the correct
annotation of every protein-coding exon, and we were only
looking for ncRNAs in known intergenic regions, then gsimu-
lator would be the most appropriate tool; if, on the other hand,
we had zero information about protein-coding exons, and were
predicting genes blindly in an unannotated genome, then
simgenome would be more appropriate. The reality is
somewhere in between; for D. melanogaster, where most (but not
all) exons are now believed to be known with confidence, it is
probably closer to gsimulator.

Due to the large number of false positives in these screens, we
are interested primarily in the sensitivity of the grammars when
the false positive rate is lowest, i.e. the left-hand side of the plot.
The x-axis of the plots is shown logarithmically in order to better
highlight the performance in this regime.

In general, the relative performance of the different grammars
varied wildly across different ncRNA subfamilies and different
methods for generating null/decoy datasets. The PFOLD
grammar in particular performed relatively weakly when the null
dataset was generated by gsimulator (which has low GC content
and a low degree of conservation), but was the strongest when
using a simgenome-generated dataset (wherein the GC content
is closer to uniform and the substitution rate more heterogeneous,
thanks to conserved information-rich regions such as exons).
Conversely, the EvoFold and ClosingBp grammars performed well
on the gsimulator test, but poorly on the simgenome test.
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The ClosingBp grammar, which was designed to model a
phenomenon specifically observed in rRNA [33], generally
performed better on the rRNA benchmark than on the others.
The Dinuc grammar, which differs from the PFOLD grammar
only in its null model, also performed better on rRNA.

Of the four gap models we tried, only the substitution-based
model (GapSub) seems to yield a significant improvement; this
may be because the birth-death model which we tried (GapLinks)
was actually a single-event approximation to a true birth-death
process, and so is under-normalized probabilistically. The shape of
the ROC curves for the gap models may suggest that the
performance could benefit from a null-model that explicitly
modeled regions with no or few gaps.

We found that the Dinuc grammar, with a strand-symmetric
dinucleotide model of intergenic sequence, underperformed on
our test datasets, with the exception of rRNA (Figure 1). A
dinucleotide model of sequence can capture local correlations,
whereas our ncRNA gene model captures only long-distance
correlations due to secondary structure. We hypothesize that a
dinucleotide model of intergenic is “too good” for our current
gene model: in situations where the structural-conservation signal
is weak, whether due to little base-pairing or poor alignments, local
correlations may contribute more to the sequence likelihood than
secondary structure. A dinucleotide model of intergenic sequence
may be well-suited to a more elaborate ncRNA model which
captures local correlations such as base-pair stacking effects. This
may be a general rule for detecting conserved elements: the
conserved-element model should be capable of modeling all
correlations, local or long-distance, represented in the null model.

We chose the ClosingBp grammar for our whole-genome
screen, it being a novel PFOLD derivative which appeared to give
good performance in the gsimulator test (i.e. on intergenic DNA).
The basic elements of this grammar are illustrated in Figure 2.

Patterns of nucleotide substitution in non-coding RNA

Compensatory substitutions in ncRNA stems, where paired
bases can be seen as evolving together as a coherent unit (just as
codons evolve as coherent units in protein-coding genes), are a
classic signal of structural conservation. For example, Figure 3
shows a tRNA exhibiting compensatory substitutions at 3 sites.
The substitution rates of these paired mutations describe the
constrained molecular evolution of structured RNAs and as such
must be chosen carefully to maximize the predictive power of our
model.

We used the EM algorithm to estimate ncRNA substitution
rates from two datasets: (1) a subset of multiple alignments from
release 7 of RFAM [37] whose annotated secondary structure was
derived from a published source; (2) a set of pairwise alignments
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Figure 2. Design of the ClosingBp grammar. The left figure gives an overview of our approach and the right figure a detailed picture of the
secondary structure submodel for structured RNA. The state labeled “ncRNA (+/— strand)” chooses the strand of the structured element. Solid arrows
are transitions from a single state to another state and dotted arrows are multifurcations (transitions from one state to a set of states). In the right
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derived from the mix80 dataset used to parameterize the
CONSAN program [38], which in turn was derived from the
European Ribosomal RNA database. In each case, we estimated a
phylogenetic tree for the dataset using the Jukes-Cantor model,
then used this tree in estimating the rates. We did not enforce that
the substitution rate matrices be normalized to one expected
substitution per unit of time (as is common in some molecular
evolution analysis), since we wanted to account for the fact that
stem regions evolve more slowly than loop or intergenic regions.

Figure 4 compares these re-estimated base-pair substitution
rates to those of PFOLD, on which our grammar models were
originally based. The most notable difference is that both datasets
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exhibit significantly slower rates than PFOLD’s. More subtly, the
RFAM-trained rate matrix (middle) has a noisier equilibrium
distribution, assigning greater weight to non-canonical base-pairs,
than the PFOLD matrix (left). This resulted in significantly
deteriorated performance at gene prediction relative to PFOLD
(results not shown). Speculating that this may have been due to
mis-annotated base-pairs in RFAM (which applies a consensus
secondary structure to every sequence in an alighment), we next
used the mix80 dataset, where each sequence is individually
annotated with its own structure. This dataset is also closer to the
dataset of rRNAs which was used to parameterize PFOLD
(B.Knudsen, personal communication). As can be seen from
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Figure 3. Recovery of a tRNA (FlyBase gene identifier FBgn:0050220) on chromosome 2R. We recover the four stems of the classic
cloverleaf structure, as well as a spurious single base-pair annotated as stem 1 (green). The 5’ boundary is exactly recovered and the 3’ boundary is 2
nt shorter than the FlyBase annotation. Note that stems 2 and 3 (yellow and blue) have, respectively, one and two compensatory mutations. If a base
pair exhibits compensatory mutations, the “CS” row shows the count of distinct canonical base-pairs in the columns. The “BP” column shows how
many sequences contain a canonical base pair in the consensus structure (“a”=10). The “SS_cons” row indicates the ML consensus secondary
structure predicted by our model; colors of nucleotides and numbers in the “SN” row indicate the stems of this predicted structure. Figure produced
with colorstock, described by [51]. The alignment is in the Stockholm file format used by RFAM [37].

doi:10.1371/journal.pone.0006478.9003
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Figure 4. Substitution rate matrices for co-evolving base-pairs. The area of each bubble is proportional to the corresponding rate (the gray
bubble in the upper-left of each plot shows the scale: its area corresponds to 0.5 substitutions per unit of time). The color of a bubble indicates whether
the source and destination base-pairs are canonically paired. (Red, Yellow) circles show substitutions from canonical to (canonical, non-canonical) base-
pairs; (Blue, Black) show substitutions from not paired to (canonical, non-canonical). The area of the bubbles in the row beneath each plot indicates the
equilibrium distribution of the mutation process (canonical base pairs are green, non-canonical are black). The RFAM-trained rates (upper right) show
higher rates of mutations away from canonical pairings than do the mix80-trained rates (lower left) or the original PFOLD rates (upper left). In the
closing base-pair of stems (lower right) one can observe a bias towards G-A base-pairs in the equilibrium distribution as well as high rates of mutations
away from canonical pairings (yellow bubbles). See “Patterns of nucleotide substitution in non-coding RNA" for further details.
doi:10.1371/journal.pone.0006478.g004
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Table 1. Recovery of annotated ncRNAs in D. melanogaster,
where ncRNA annotations are taken from FlyBase Release 5.4.

Predicting Non-Coding RNAs

Table 2. Chromosomal distribution of our predicted ncRNAs
in D. melanogaster.

miRNA tRNA snRNA snoRNA RNaseP other 2L 2R 3L 3R 4 X
Recovered 56 246 17 64 1 27 Predictions 9,644 9,787 11,534 13,341 225 11,557
% of total 62% 84% 36% 26% 100% 31% Filtered Predictions 2,846 3,001 2,953 3,716 119 2,720

Results are not reported for the unaligned rRNAs.
doi:10.1371/journal.pone.0006478.t001

Figure 4 (right), the mix80 dataset has a sharper split between
non-canonical and canonical base-pairs, more similar to PFOLD’s
(left).

One of our variations on the PFOLD model was to allow,
although not require, a separate substitution model for base-pairs
at the ends of stems (i.e. the closing base-pair of a loop), where a
bias towards G-A and A-A base-pairs has been observed in
ribosomal RNA [33]. This grammar is illustrated in Figure 2 (note
that only the Close and ClosingLoop states are new; the remainder
of the grammar is taken from PFOLD, so that PFOLD’s
mechanism for generating loop regions — via the transition F—B
— remains a viable alternative to the new states.) Figure 4
compares the matrix thus obtained (lower right) to the matrix for
regular base-pairs (lower left). We observe a bias to G-A base-pairs
(although no A-A bias), and furthermore see little evidence for
compensatory mutations in these positions.

Recovery of known ncRNAs

Table 1 shows our recovery rates, broken down by category, of
ncRNAs annotated in FlyBase release 5.4 [39]. The results in this
table are generated using our ClosingBp grammar, one of the
highest-performing according to our benchmarks (see “Design of
ncRNA gene model”).

Our method largely scores conservation of RNA secondary
structure according to observed compensatory mutations within
stems, and as such is most effective at picking up well-conserved
ncRNAs with long hairpins or several stems. We successfully
recover the majority of annotated miRNAs and transfer RNAs

49 -

Frequency
[

Our filtering procedure to obtain high-quality predictions for experimental
verification is described in detail in Methods.
doi:10.1371/journal.pone.0006478.t002

(tRNAs); the long hairpins of processed primary transcripts of
miRNA (pre-miRNA) and four stems of tRNAs make both
relatively easy for our method to detect. Many C/D box
snoRNAs, in contrast, have too few base-pairs to score well under
our method.

Statistics of predicted ncRNAs

Table 2 shows the chromosomal distribution of our predicted
ncRNAs and Figure 5 gives the length distributions of our
predictions in intergenic sequence which overlap embryonic
transcriptional data before and after filtering criteria are applied.
The filtered predictions are in general slightly longer than the
unfiltered predictions, and their length distribution is slightly
flatter.

Several other whole-genome screens for novel ncRNAs in
Drosophila have recently been conducted, including computational
screens for structured RNAs using the programs RNAz [11,40]
and EvoFold [10] as well as an experimental screen for miRNAs
by [13]. Table 3 shows the intersection of our predictions with
those reported from the RNAz screen. We found little overlap
between our prediction sets, despite both methods using the same
PECAN alignments as input. As reported in Table 4, we find
greater overlap with the prediction set produced with EvoFold
[28], which uses a phylo-grammar-based approach similar to ours.
This is encouraging, given that EvoFold was run on the
MULTIZ alignments, which use an entirely different synteny
map from the PECAN alignment. We recovered 65 (44%) of the

O Intergenic+Transfrag
B Intergenic+Transfrag (Filtered)

20 40 60

I I |
80 100 120

Length (nt)

Figure 5. Length distribution of predictions in intergenic sequence which overlap embryonic transcriptional data. Grey denotes all
Intergenic+Transfrag predictions and blue denotes Intergenic+Transfrag predictions which pass our filtering criteria. Longer predictions, with their
generically longer stems, are more likely to exhibit the compensatory mutations required by our filtering criteria, thereby flattening the distribution.
doi:10.1371/journal.pone.0006478.g005
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Table 3. Comparison to RNAZ's results.

Category Prediction overlap
p>0.5 4,163 (10%)
p>0.9 1,658 (10%)

RNAZz reports 42,482 predictions at a confidence level of p>0.5, so we
compared those predictions with our best-scoring 42,482 predictions.
doi:10.1371/journal.pone.0006478.t003

miRNAs predicted by the recent experimental screen [13]. We
found no significant correlation between overlap with the results of
EvoFold, RNAz or other [13] screens and the phylogenetic
conservation (% identity) of the overlapping predictions.

Taken together, these comparisons with previous approaches
suggest that no single method assembles a complete catalog of
ncRNAs. It is best to regard the various prediction sets as
complementary. In particular, phylo-grammar-based genome
screens run on different whole-genome alignments can recover
distinctly different prediction sets corresponding to the different
phylogenetic signals present in the input alignments.

Finding homologues to characterized RNAs

We screened our unfiltered, non-overlapping intergenic predictions
i D. melanogaster against the RFAM database with the Infernal ncRINA
homology search tool [41]. 114 of these predictions showed significant
homology to a RFAM family, including 2 predictions scoring as
tRNAs, 22 as miRNAs, and 36 as snoRINAs. Relatively few of these
predicted tRINAs, miRNAs or snoRNAs were predicted by other
whole-genome screens; Table 5 gives a detailed breakdown.

As suggested earlier, our predictions may be associated with introns
of unannotated protein-coding genes. 19 of our predictions scoring as
snoRNAs correspond to the single RFAM family snoR28, and 17 of
these appear in a tandem array on the X chromosome. The 4.5 kbp
spanned by the predicted tandem array is contained within a cDNA
annotated in FlyBase, suggesting that our predictions lie within intronic
sequence of an unannotated protein-coding gene.

Associations with protein-coding genes

As reported in Figure 6, we found a small (but significant)
depletion of predictions near the 3’ end of protein-coding genes as
well as depletion of predictions in the first intron. The depletion of
3" predictions might conceivably be due to unannotated exons.
Depletion of predictions in the first intron is harder to explain; it is
possible that other conserved signals in the intron either exclude
real ncRNAs from these locations, or result in fewer false positives
under our prediction screen.

Table 4. Comparison to EvoFold's results.

Category Prediction overlap Total overlap
Short 1,855 (14%) 6,436 (50%)
Long 2,239 (22%) 6,225 (62%)
HighConf 96 (16%) 151 (25%)

The center column shows the recovery rate across our predictions and the right
column the recovery rate across all of our annotated structures, including those
which did not meet our discovery threshold (Methods). Our predictions in each
category (Short, Long and HighConf) were filtered per EvoFold’s analysis and
then compared with EvoFold'’s predictions.
doi:10.1371/journal.pone.0006478.t004
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Table 5. We used the cmsearch utility provided with
Infernal to search for homology to known ncRNA families in
our intergenic filtered prediction set.

Overlap with other ncRNA gene sets:

Predictions RNAz EvoFold [13]
tRNA 2 1
miRNA 22 2 1 2
snoRNA 36 8
other 54 13

Results reported here had a bit score>16.4 (see “Screening predictions against
RFAM” for details).
doi:10.1371/journal.pone.0006478.t005

As a first step towards functional characterization of protein-
coding genes with predicted structurally-conserved elements in
their 3" and 5’ untranslated regions (UTRs) and introns, we
identified enriched Gene Ontology (GO) terms with GO::Term-
Finder [42]. Figure 7 indicates potential biological functions for
the structured elements we identify. Many of these terms suggest
functional roles in localization processes and transcriptional
regulation, including “pattern specification process,” “localiza-
tion,” “protein binding” and “transcription factor activity” for
UTRs and “localization,” “actin binding” and ‘‘transcription
regulator activity” for introns, suggesting that these predicted
structured elements may play regulatory roles. A recent survey of
3,370 genes in D. melanogaster found that 71% exhibited subcellular
localization of the corresponding mRNA in the first 4 hours (stages
1-9) of embryogenesis [29]. In the context of this result, our
predictions in 3" and 5" UTRs are of particular interest. The
localization signals for the vast majority of the mRINAs studied by
[29] are completely uncharacterized, and many of our predicted
structurally-conserved elements in 3" and 5" UTRs and introns
may represent novel signal elements for subcellular localization.

Methods

Sequence and alignment data

We used alignments of twelve Drosophila genomes (melanogaster,
pseudoobscura, sechellia, sumulans, yakuba, erecta, ananassae, persimilis, willistonz,
mojavensts, viriis and grimshawr) which were produced by the Drosophila
Twelve Genomes Consortium [27]. These alignments used the
Comparative Assembly Freeze 1 (CAFI1) sequence data, which
includes Release 4 of the melanogaster genome and release 2 of the
pseudoobscura genome. The other ten genomes were newly-sequenced
[27]. Both the MAVID [43] and PECAN [44] alignments of the
CAF1 data used a homology map produced with the Mercator
program [45]. The PECAN and MAVID alignments used in our
analysis can be downloaded from our results page.

Unless noted otherwise, we used annotations from FlyBase
Release 5.4 of the D. melanogaster genome for our analysis,
including recovery of annotated ncRNAs (Table 1) and analysis
of predictions in UTRs of D. melanogaster. These annotations use
the same co-ordinate scheme with respect to D. melanogaster (1.c.
assembly) as the CAF1 alignments.

Simulations of neutral evolution

We used simulated alighment data to guide the design of our
ncRNA discovery pipeline and estimate the corresponding false-
positive rate. A good synthetic dataset should reproduce
empirically-observed features of actual alignments, including gap
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Figure 6. Association of the top-scoring 5% of predictions with protein-coding genes. Left: distance from intergenic predictions to the
nearest protein-coding gene. “Upstream” means the prediction is upstream of the gene. The red bars show the empirically observed distribution; the
grey bars show the distribution that would be expected if hits were uniformly distributed across the genome. We observe a clear depletion of
intergenic predictions near the 3’ end of protein-coding genes. Right: frequencies of predictions enclosed completely by introns, separated by intron
number (i.e. the position of the intron in the ordered list of introns associated with the parent gene). The blue bars show the empirically observed
counts; the error bars show 99% bounds for a uniform random distribution of bases across all chromosomes (excluding bases outside introns). Introns
shared by multiple transcripts were counted multiple times. There is a depletion of predictions in the first intron.

doi:10.1371/journal.pone.0006478.g006

(indel) structures and local correlations between nucleotides, both
of which locally deplete the information content of an alignment
and can elevate false-positive rates.

We generated synthetic alignments by forward simulation of the
evolutionary process with the simmgenome program [36] followed by
re-alignment with PECAN [44]. simgenome models the evolution of
syntenic blocks of the genome. Genomic features, including coding and
intronic sequence, locally-conserved regions, pseudogenes, and DNA
transposons, are modeled with a phylo-grammar; neutrally-evolving
intergenic sequence is modeled with a “transducer,” a probabilistic
model which explicitly incorporates indel length distributions and the
effect of local sequence context on substitution and indel rates [46].
Table 6 compares genome-wide statistics of our simulated data with
those of the PECAN alignments of twelve Drosophila genomes and
Table 7 the single and di-nucleotide frequencies.

Previous ncRNA annotation efforts have generated datasets of
negatives by shuffling actual genome alignments [40] rather than
simulating the evolutionary process. Figure 8 shows a comparison
of false-positive estimates generated by our simulation method
with those estimated with a shuffling-based approach. We found
that our false-positive estimates depended strongly on the amount
of shuffling used. There is no obviously correct number of shuffles:
excessive shuffling can destroy local correlations, but insufficient
shuffling may leave signals of real ncRNA genes. Further
complications arise from the need to preserve alignment gap
statistics. Gaps and local sequence complexity are often correlated;
for example, microsatellite regions are indel-prone.

simgenome implements both measurement and forward-
simulation algorithms. That is, one can measure parameters from
data, or use the measured parameters to simulate new data. Given
multiple alignments as input, the program estimates evolutionary
parameters directly from these training data. If a phylogenetic tree
1s supplied, then the program will generate a synthetic multiple
alignment. This yields a dataset of negatives, or alignments with
statistical properties similar to those of the original training
alignments but with no true ncRNAs present.

Annotation pipeline design

Several principles inform the design of our ncRNA annotation
pipeline, illustrated in Figure 9. Assuming that we will re-run
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everything multiple times using different models or alignments on
distinct species clades, we automate as much as possible using make
and relational databases. Ior extensive discussion of the advantages of
make for workflow automation, see [47]. We break the analysis into
a series of discrete steps, explicitly identifying dependencies using
Makefile rules, in order to easily run on new data such as different
alignments or genomes from other clades. We use the xrate phylo-
grammar engine wherever possible (for example, resolution of
overlapping gene predictions on opposite strands follows automati-
cally if a strand-symmetric grammar is used). Results and post-
prediction analyses are stored in a relational database.

We divided the input multiple alignments into overlapping
windows of 300 nt with a step size of 100 nt. For each overlapping
window, we used xrate to re-estimate the branch lengths of a
phylogenetic tree with the EM algorithm, and then scanned the
window for conserved RNA secondary structure.

Detailed instructions for running the annotation pipeline can be
found at http://biowiki.org/ TwelveFlyRocCurveEstimation

Phylo-grammar design

We chose a general-purpose approach to designing phylo-
grammars in order to conduct a broad screen for signs of structural
conservation without reference to particular sequence or structural
motifs. While both sensitivity and specificity can be increased with
methods designed to annotate only particular well-characterized
families of ncRNAs, such as Snoscan for snoRNA detection [48],
incorporating family-specific motifs (such as the conserved C
(UGAUGA) and D (CUGA) boxes in C/D box snoRNAs) is
incompatible with our goal of finding all structurally-conserved
elements. We seek to survey the genome for novel elements
showing structural, and hence potentially functional, conservation
rather than catalog members of well-characterized families.

We searched each 300 nt window for the highest-scoring
secondary structure element of length=130 nt, where the score is
the log-odds ratio,

P(datajncRNA)

=log————MmM — — 7~
score=Tog P(datalintergenic)’

which compares the likelihood that the alignment data represents
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doi:10.1371/journal.pone.0006478.g007

Table 6. Genome-wide statistics of our simulated alignments
of twelve Drosophila genomes closely match those of the true
data. Table 7. Single and di-nucleotide frequencies for our
simulated data (left) closely match those in the twelve
Drosophila genomes (right).

Dataset % ID % gap % coding % intronic

PECAN 83% 89% 33% 18%

simgenome (realigned)  85% 83% 33% 18% A c G T A c G T
simgenome (original) 69% 41% 33% 18% 0.273 0.228 0.228 0.271 0.285 0.204 0.204 0.284
The average length of simulated alignments was 240K columns, in contrast to A 0070 0053 0052 0060 0094 0049 0052 0077
the 142K for the PECAN alignments; however, our windowing approach makes C 0.052 0.047 0.048 0.055 0.065 0.041 0.036 0.051
our method |nsen5|F|ve to the 5|zes“ o.f syntenic regions. We %e.nerateo! a total of G 0055 0049 0047 0050 0051 0053 0041 0048
3.6M columns of alignment data. “simgenome (realigned)” is the simulated

alignments after re-alignment with PECAN which we use for all subsequent T 0.058 0.052 0054 0.069 0061 0051 0065 0.094
analysis and refer to as simply “simgenome”. “simgenome (original)” is the

simulated alignments generated by simgenome. Sequence identity and gap Our simulated data models heterogeneity in base composition across different
fraction were estimated from the PECAN alignments; coding and intronic genomic features such as coding and intergenic sequence, but does not model
fractions were estimated from [27]. local fluctuations in base composition.

doi:10.1371/journal.pone.0006478.t006 doi:10.1371/journal.pone.0006478.t007
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Figure 8. Receiver Operator Characteristic (ROC) curves for the
ClosingBp grammar (see “‘Design of ncRNA gene model”),
using our simulated data and two modes of shuffling to
generate true-negative datasets. True-positive datasets were taken
from the PECAN alignments of twelve Drosophila genomes based on
all annotated non-ribosomal ncRNAs in FlyBase Release 5.4 of the D.
melanogaster genome. False-positive estimates from a shuffling-based
approach depended strongly on the amount of shuffling. We ran the
shuffle-aln.pl script provided with the Vienna RNA package [52] in
“conservative” and “complete” modes to create shuffled alignments of
all annotated ncRNAs in D. melanogaster.
doi:10.1371/journal.pone.0006478.g008

a ncRNA gene to the likelihood that it is intergenic sequence. We
calculated the likelihood that the data represents a ncRNA gene by
summing over all possible structures,

>

secondary structure

P(datajncRNA) = P(data, secondary structure[ncRNA).

We summed over possible structures in order to classify
ncRNAs in a manner agnostic to their true secondary structure.
This summation over possible structures was particularly impor-
tant for our ClosingBp grammar, which is structurally ambiguous
[38]: Closing base-pairs of stems can evolve under either a regular
base-pair model or a special substitution model estimated from the
closing base-pairs of ribosomal RNA (see “Patterns of nucleotide
substitution in non-coding RNA”).

ROC curve preparation

The ROC curves were generated as follows. Whole-genome
alignments and D. melanogaster ncRNA annotations in FlyBase
release 5.4 [39] were used to estimate sensitivity, defined as

number of ncRNAs recovered
total number of ncRNAs annotated in FlyBase

sensitivity =

Simulated data (see “Simulations of neutral evolution”) was
used to estimate the proportion of false positives (and thus the
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specificity) as

number of predictions in simulated data

FPR = - - .
total number of windows of simulated data

Both sensitivity and specificity are parametric functions of the
score cutoff used by our discovery procedure, thereby allowing us
to generate ROC curves.

We provide detailed instructions, including command-line
instructions for programs, for how to duplicate our ROC analysis
at http://biowiki.org/ TwelveFlyRocCurveEstimation

Filtering criteria

Because our phylo-grammar-based approach treats gaps in the
alignment as missing data, our prediction method can predict
RNA structures in an alignment with little or no D. melanogaster
sequence if the other Drosophila genomes in the alignment exhibit
signals of structural conservation. Because we are primarily
interested in predictions in D. melanogaster, we filter out such
“predictions” as described below.

Furthermore, our windowing approach gives rise to overlapping
predictions. Unless specified otherwise, if predictions overlapped
by more than 80%, then we retained the highest-scoring
prediction and discarded the other(s).

In order to obtain a high-quality set of predictions for
subsequent experimental verification, our prediction set was
further reduced by applying the following stringent filters (similar
to the “HighConf” filters used by EvoFold for [28]) to the
maximum-likelthood conserved structured predicted by our
model. Conserved structures were required to include at least
ten base-paired columns, at least two of which had to display
compensatory mutations (a compensatory mutation means a
substitution at one or both sites of a base-pair such that the
canonical base-pairing is preserved: for example, an A-U base-pair
aligned with a G-C). Alignment segments predicted to contain
conserved RNA secondary structure were discarded unless they
contained at least 20 bases of D. melanogaster sequence and
sequence from at least four other species with gaps in no more
than 7.5% of predicted base-pairs.

Finally, when looking for novel ncRNA genes (as opposed to
regulatory elements that might be located within protein-coding
genes), we excluded any predictions that overlapped with
previously annotated genes (protein-coding or non-coding),
pseudogenes or transposons in FlyBase release 5.4 [39]. We
further honed our prediction set by requiring overlap with
transcriptional fragments identified during the first twenty-four
hours of Drosophila development using Affymetrix tiling arrays [9],
thereby obtaining the “Intergenic+Transfrag (Filtered)”” prediction
set referenced in the main paper.

Screening predictions against RFAM

We extracted the D. melanogaster sequence for all intergenic
predictions, including flanking sequence up to a total length of 100
nt. To avoid overcounting, we looked only at the 854 completely
non-overlapping predictions (compared with the 885 referenced in
the main paper). We then used the Infernal v0.81 utility
cmsearch with all RFAM 8.1 covariance models to perform a
homology search on our prediction set. RFAM and Infernal are
available from http://rfam.janelia.org/.

The Infernal manual suggests a rough prediction significance
cutoff on the reported bit score of logy (2:length), where length is
the length of the target sequence. The total length of the query set
of 854 non-overlapping predictions is 85,526 nt, leading us to

August 2009 | Volume 4 | Issue 8 | e6478



rRNA

Gequencing' ' Assembly)

MERCATOR

Orthology maps

MAVID/PECAN

Transducers
for simulating
DNA evolution

Whole-genome

alignments

Null model

Predicting Non-Coding RNAs

RFAM

ncRNA alignments

grammars

Gene prediction
grammars

grammars

alignments

Simulated
alignments

Alignments of
known ncRNAs

Transcriptional
array data

XRATE

XRATE + W[NDOWLICKER)

Flybase
annotations

Database

ncRNA gene
predictions

Analysis

'GOannotations' ' Other results )

Figure 9. Conceptual overview of the steps in our analysis pipeline, including model parameterization (“training”); generation of simulated
datasets; model evaluation (ROC curves); genome-wide prediction of conserved ncRNAs; and analysis of predictions. Rebuilding of any part of the
graph is fully automated using make: Nodes represent targets and edges represent dependencies. Names of programs used in key steps (xrate,
windowlicker.pl, MAVID, etc.) are shown near the relevant edges in the graph.

doi:10.1371/journal.pone.0006478.9009

chose a cutoff of logy(85, 526) s 16.4 bits. When a prediction
scored highly under more than one covariance model, we selected
the highest-scoring model.

Discussion

We predict approximately 1,500 novel structured RNAs in
intergenic regions which overlap embryonic transcriptional
fragments, as well as 3,000 in 3" and 5" UTRs of protein-coding
genes. Of these, 100 of the intergenic predictions and 800 of the 3’
and 5" UTR predictions show very high conservation of both
sequence and structure, indicating likely functional relevance.
RFAM screens against our results include 22 new miRNAs and 36
new snoRNAs. Of the snoRNAs, 19 correspond to the RFAM
family snoR28, and 17 of these appear in a tandem array within
an unannotated protein-coding gene.

Our approach to ncRNA discovery is distinguished from prior
work by our robust evaluation of annotation models as well as a
novel procedure for false-positive estimation. Our xrate program
exposes the design of the prediction grammar in a configuration
file, allowing us to easily test many different predictions models to
identify their relative strengths. Combined with automation of our
entire workflow, this enabled us to evaluate a wider range of
prediction algorithms than previously (as well as two distinct
whole-genome alignment programs; see Text S1). While this paper
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was In preparation, two other works discussing null models in
ncRNA prediction appeared in the literature [49,50].

Different classes of ncRNAs exhibit different patterns of
molecular evolution, making the comparative model evaluation
which we have described crucial to designing an effective whole-
genome screen. For example, explicitly modeling the substitutions
at the closing base-pairs of stems increased our recovery of tRNAs
by 10%, but decreased our recovery of other ncRNAs.

As discussed throughout this work, our methodology is inherently
alignment-sensitive and simply cannot detect structural conservation if
the input sequence 1s mis-aligned. This observation, combined with the
low overlap between the RNAz, EvoFold, and [13] screens, suggests
that we have probably missed many real ncRNAs. [12] have recently
presented a methodology for de novo ncRINA annotation which relies on
an input multiple alignment only for homology detection, and so is
capable of detecting conserved structure even in the presence of local
mis-alignment. Such an approach provides a promising direction for
ncRNA annotation.

At the most basic level, we are interested in investigating which
features of genomic data, both in structurally-conserved and
neutrally-evolving sequence, are important for de novo ncRNA gene
annotation. The thorough approach to model training, compar-
ative model evaluation and false-positive estimation which we have
described here will allow us to predict novel genomic features with
increasing precision and confidence.
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