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Substantial effort is currently devoted to identifying cancer-associ-
ated alterations using genomics. Here, we show that standard
blood collection procedures rapidly change the transcriptional and
posttranscriptional landscapes of hematopoietic cells, resulting in
biased activation of specific biological pathways; up-regulation of
pseudogenes, antisense RNAs, and unannotated coding isoforms;
and RNA surveillance inhibition. Affected genes include common
mutational targets and thousands of other genes participating in
processes such as chromatin modification, RNA splicing, T- and B-cell
activation, and NF-κB signaling. The majority of published leukemic
transcriptomes exhibit signals of this incubation-induced dysregula-
tion, explaining up to 40% of differences in gene expression and
alternative splicing between leukemias and reference normal tran-
scriptomes. The effects of sample processing are particularly evident
in pan-cancer analyses. We provide biomarkers that detect pro-
longed incubation of individual samples and show that keeping
blood on ice markedly reduces changes to the transcriptome. In
addition to highlighting the potentially confounding effects of tech-
nical artifacts in cancer genomics data, our study emphasizes the
need to survey the diversity of normal as well as neoplastic cells
when characterizing tumors.

leukemia | RNA splicing | nonsense-mediated decay | batch effects

Recent years have seen rapid growth in the large-scale char-
acterization of tumors by consortia such as The Cancer

Genome Atlas (TCGA), the International Cancer Genome Con-
sortium, and the Therapeutically Applicable Research to Gener-
ate Effective Treatments project. Although the high-throughput
assays used by these consortia are precise, analyses of the resulting
data can be confounded by artifacts arising from both biological
and technical variability. Cancer studies are susceptible to both
“sample-intrinsic” (arising from sample handling itself, including
specimen collection, sample transfer and storage, and isolation
of material) and “assay-intrinsic” (associated with specific assays,
such as microarrays or high-throughput sequencing, or differences
in equipment, reagents, or personnel) artifacts. Sample-intrinsic
artifacts depend on the tissue assayed, may distinguish otherwise
similar biological specimens, and typically cannot be eliminated
without discarding affected biospecimens. In contrast, assay-
intrinsic artifacts are agnostic to the biological specimen and
frequently can be experimentally or statistically mitigated once
recognized (1).
Although assay-intrinsic artifacts have received widespread

attention in the context of genomics data (1–5), the impact of
sample-intrinsic artifacts on high-throughput studies has been
less well explored. Nonetheless, previous reports suggest that
sample-intrinsic artifacts are likely important to consider when
interpreting genomics data. For example, blood collection pro-
cedures and the choice of anticoagulant can impact subsequent
clinical chemistry assays or affect hematological parameters such
as cell number and morphology (6, 7). Similarly, blood shipping
temperature and the timing of sample processing can affect levels
of protein-based biomarkers and other analytes in plasma or se-
rum, alter the transcription (e.g., IL8, IL10, CCR2, SOCS2, or
JUN) or splicing (e.g., NF1, PTEN, or ATM) of specific genes, or

cause globally decreased/increased transcription or accelerated
RNA degradation, depending upon conditions (8–15).
Genomic studies of leukemias may be particularly susceptible

to sample-intrinsic artifacts in comparison with similar profiling
of solid tumors. For many solid tumors, patient-matched normal
samples can be acquired from adjacent uninvolved tissue, and
the matched tumor/normal samples can be subsequently handled
similarly. In contrast, the circulating nature of leukemic cells ren-
ders the acquisition of patient-matched controls less straightfor-
ward, so samples from unrelated healthy donors are typically used
to generate reference normal transcriptomes (Fig. 1A). Leukemic
samples are commonly collected by the treating physician and then
shipped for a variable length of time as whole blood or bone
marrow to a research center for subsequent processing (Fig. 1B).
In contrast, control samples are collected expressly for research
rather than clinical use and therefore may be more rapidly
processed by the collecting research institution or company.
The substantial literature documenting transcriptional changes

caused by ex vivo incubation suggests that comparing the tran-
scriptomes of differentially handled leukemic and normal samples
is likely problematic. However, the impact of ex vivo incubation on
the transcriptome has not been systematically assessed with high-
throughput sequencing, and the potential extent of incubation-
induced artifacts within large-scale leukemia studies has not
been measured. Here, we identify transcriptional and post-
transcriptional changes caused by ex vivo sample incubation
and search for signs of these artifacts in published leukemia
studies (Table S1). Our results show that widespread biological
changes caused by ex vivo sample incubation can confound the
identification of cancer-specific alterations in many leukemia
genomics studies.

Significance

An important goal of cancer biology is to identify molecular dif-
ferences between normal and cancer cells. Accordingly, many
large-scale initiatives to characterize both solid and liquid tumor
samples with genomics technologies are currently underway.
Here, we show that standard blood collection procedures cause
rapid changes to the transcriptomes of hematopoietic cells. The
resulting transcriptional and posttranscriptional artifacts are visi-
ble in most published leukemia genomics datasets and hinder the
identification and interpretation of cancer-specific alterations.
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Results
Ex Vivo Incubation of Blood Causes Widespread Genomic Alterations.
We collected whole blood from two male and two female healthy
donors in anticoagulant blood collection tubes, which conforms
to standard practice. We left this whole blood at room temper-
ature for defined lengths of time (0-48 h), isolated peripheral
blood mononuclear cells (PBMCs), and extracted RNA (Table
S2). For two donors, we additionally tested the effect of cryo-
preservation by introducing a liquid nitrogen freeze–thaw cycle
before RNA extraction. RNA Integrity Number (RIN) mea-
surements were stable across the incubation period for all four
donors, suggesting that RNA quality is maintained during whole
blood incubation or cryopreservation (Fig. 1C). We measured

genome-wide RNA abundance with the Illumina HiSeq 2500,
and found that transcript abundance was highly reproducible
between the different donors at each time point (Fig. S1).
Simply counting total numbers of differentially expressed coding

and noncoding genes and alternatively spliced cassette exons rel-
ative to the 0h time point demonstrated that rapid and widespread
changes affected virtually all levels of the gene expression
process (Fig. 1D). We observed highly similar time-dependent
changes for samples that were or were not cryopreserved, sug-
gesting that transcriptional and posttranscriptional changes in-
troduced during ex vivo incubation are relatively unaffected by
long-term storage of samples. We henceforth describe data
obtained from the fresh (not cryopreserved) PBMC time course,
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Fig. 1. Ex vivo blood incubation causes rapid transcriptional and posttranscriptional changes. (A) Biospecimen collection for solid and liquid tumors. (B) Blood
sample processing. Whole blood samples frequently incur an ex vivo incubation between collection and processing, which we mimicked in the indicated time
series. (C) RNA integrity numbers (RINs) from four individual healthy PBMC donors. For the cryopreserved samples (donors 1 and 2), the first time point was at
1 h rather than 0 h. (D) Numbers of differentially expressed protein-coding and noncoding transcripts and differentially spliced cassette exons relative to the
first (0 or 1 h) time point. Legend is as in C. (E) Log2 ratio of numbers of up- vs. down-regulated transcripts or cassette exons with increased vs. decreased
inclusion at 48 h. Legend is as in C. (F) RNA-seq coverage along excerpts of NOTCH2, LEF1, and PHF20 (donor 4). Introns are truncated at the vertical dashed
lines. The inclusion of specific exons or introns (orange boxes) is time-dependent. (G) Overlap between differential gene expression or splicing in PBMCs (0 vs.
48 h; intersection of donors 3 and 4) and tumors vs. normal controls. Solid lines, median overlap per dataset; shading, first and third quartiles of the overlap;
dashed lines, median across all solid tumors. Differential gene expression or splicing was computed for each tumor sample individually; the illustrated quantiles
were computed over all tumor samples for each dataset. The control samples are as follows: lymphoid leukemias, t = 0h PBMCs; myeloid leukemias, median of
four normal bone marrow samples; lymphomas, 0h PBMCs; B-ALL, B-cell acute lymphocytic leukemia; B-CLL, B-cell chronic lymphocytic leukemia; T-ALL, T-cell
acute lymphocytic leukemia; AML, acute myeloid leukemia; aCML, atypical chronic myeloid leukemia. From left to right, datasets are from: lymphoid leukemias
(20–23), myeloid leukemias [Database of Genotypes and Phenotypes (dbGaP) study no. 2447; refs. 22, 24–27], lymphomas (29, 30), and solid tumors (TCGA).
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but our conclusions were unaffected when we instead used the
cryopreserved time course.
Transcriptional and posttranscriptional alterations that oc-

curred during incubation were not random. For example, pseu-
dogenes, antisense RNAs, and other abnormal noncoding RNAs
were preferentially up-regulated, and cassette exons were pref-
erentially excluded rather than included (Fig. 1E). We observed
widespread isoform switches, wherein isoforms that were rare or
even undetectable at 0 h became the major isoform after 8–24 h
of incubation (Fig. 1F). Incubation-induced isoform switches oc-
curred in genes that are reportedly misspliced in leukemic relative
to normal hematopoietic cells [NOTCH2 (16)], that have been
used as prognostic markers in leukemia [LEF1 (17, 18)], or that
participate in cancer-relevant biological pathways such as NF-κB
signaling [PHF20 (19)].

Leukemic Transcriptomes Exhibit Gene Expression Signatures of
Incubation. We next sought to determine whether the effects of
sample incubation were detectable in published leukemic tran-
scriptomes. We identified differentially expressed genes and al-
ternatively spliced cassette exons in four lymphoid (20–23) and
six myeloid (22, 24–27) leukemia studies. For the lymphoid
leukemias, we compared with our 0h PBMC samples as a
normal control; for the myeloid leukemias, we compared with
mononuclear cells isolated from four commercially purchased
normal bone marrow samples (28). We then computed the
overlap between putative cancer-dysregulated coding genes and
cassette exons—e.g., differentially expressed genes or differen-
tially spliced cassette exons in lymphoid/myeloid leukemias vs.
normal PBMCs/bone marrow—with coding genes and cassette
exons that were altered by incubation (Fig. 1G). All leukemic
transcriptomes exhibited substantial overlap with incubation-
induced alterations, particularly for genes and cassette exons
with decreased expression or inclusion in tumors. The magnitude
of this effect varied substantially both within and between
datasets. We next identified cancer-dysregulated genes and cas-
sette exons across a broad panel of lymphoma (29, 30) and solid
tumor samples (TCGA), which are typically obtained from flash
frozen or otherwise rapidly stabilized biopsies. In contrast to
leukemias, lymphomas and solid tumors exhibited relatively low
levels of overlap with incubation-induced changes in RNA expres-
sion and splicing, as well as little inter- or intradataset variability
(Fig. 1G). We conclude that sample incubation likely con-
tributes to interdataset as well as intradataset variability in
leukemic transcriptomes.
To determine which biological pathways are sensitive to

sample incubation, we identified enriched Gene Ontology (GO)
terms among differentially expressed genes after 24 h (Datasets
S1 and S2). Many of these terms correspond to cancer-relevant
biological processes, such as immune cell activation, cytokine
production, NF-κB signaling, chromatin modification, and RNA
splicing. These processes all exhibited differential expression
after only 4 h of incubation, our shortest time point, but the
magnitude of the response continued to increase throughout the
entire time course (Fig. 2A). Differentially expressed genes in
leukemic relative to normal transcriptomes were similarly
enriched for these biological pathways (Fig. 2B). Processes such
as chromatin modification and NF-κB signaling play important
roles in many leukemias, suggesting that these gene expression
signals represent true cancer biology. However, it is difficult
to confirm cancer-specific pathway activation in the presence
of incubation as an uncorrected source of variability. For ex-
ample, genes that are differentially expressed upon incubation
include common mutational targets in leukemia (IDH1, EZH2,
TP53, SRSF2, and U2AF1), genes that are frequently affected
by chromosomal translocations (MLL), and targets of cancer
therapeutics (HDAC1).

The effects of sample incubation could be especially apparent
when performing pan-cancer analyses. To test this hypothesis, we
identified differentially expressed genes in 61 pediatric acute
myeloid leukemia (AML) samples relative to normal bone
marrow mononuclear cells, as well as in 61 chronic lymphocytic
leukemia (CLL) (31) samples relative to normal 0h PBMCs.
Because AML and CLL represent distinct cell types and were
analyzed with respect to different control datasets, random
overlap in gene expression patterns is unlikely. For both of these
studies, approximately one-third of the genes that were either
up- or down-regulated in the leukemic samples were likewise
differentially expressed upon sample incubation, indicating that
incubation causes similar changes in specific genes, even in dis-
tinct hematopoietic cell types (Fig. 2C). The majority of these
incubation-affected genes were differentially expressed in both
the AML and CLL data, suggesting that artifacts of sample in-
cubation are particularly evident in pan-leukemia analyses.
We next performed an unsupervised principal components

analysis of these AML and CLL data with our PBMC time series
and four normal bone marrow samples (Fig. 2D). The bone
marrow samples were commercially purchased as cryopreserved
mononuclear cells in a previous study (28) and subject to an
incubation period of unknown length. The first principal com-
ponent separated the four datasets, as expected. The second
principal component corresponded to the axis of time in our
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Fig. 2. Sample incubation affects the interpretation of leukemic gene ex-
pression. (A) Average absolute log2 fold change of differentially expressed
genes (intersection of donors 3 and 4) associated with select GO terms
enriched during ex vivo sample incubation. (B) Enrichment of the GO terms
from A in differentially expressed genes in tumors vs. normal controls across
a panel of lymphoid (green) and myeloid (purple) leukemias. Dataset order
and references are as in Fig. 1G. Only genes differentially expressed in >25%
of samples within each dataset were included in the GO enrichment analysis.
(C ) Overlap between up- and down-regulated genes, calculated as in B.
Orange, PBMCs (0 vs. 48 h); green, B-CLL (21); purple, AML (dbGaP study no.
2447). (D) Principal components analysis of PBMCs (orange hues), B-CLL
(green) (21), AML (purple), and normal bone marrow samples (28) (orange
triangles). Clustering was performed by using 6,756 protein-coding genes
with normalized expression more than five transcripts per million in ≥90%
of samples. B-CLL samples are marked according to the proposed molecular
subgroups C1 and C2 (31). (E) Log2 fold change after 48 h of incubation
(intersection of donors 3 and 4) of genes differentially expressed between
subgroups C1 and C2 (31), divided according to group with the highest ex-
pression level. Numbers indicate genes within each subtype.
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PBMC time series. Three of the four normal bone marrow
samples were placed with our 0h PBMC samples along the sec-
ond principal component, potentially due to a relatively short
incubation period. In contrast, most of AML or CLL samples
were placed above our 8h time point, suggesting that they exhibit
gene expression signatures of sample incubation.
In addition to highlighting likely temporal differences between

cases and controls, our principal components analysis illustrates
how intradataset variability due to sample incubation can be
difficult to separate from true biological differences. The second
principal component of our unsupervised analysis, which corre-
sponds to incubation time of our PBMC samples, separated two
recently described molecular subdivisions of CLL (31) (Fig. 2D).
Furthermore, the published genes that distinguish these two CLL
subdivisions correlated with incubation time in our PBMC time
series (Fig. 2E). In contrast, the majority of published biomarkers
from seven studies of AML subgroups and prognostic sig-
natures were relatively stable over time, but a substantial minority
changed significantly during incubation (Fig. S2). Excluding

incubation-responsive genes from subgroup or prognostic analyses
may improve the accuracy of leukemic gene signatures.

Incubation Induces Novel Coding Isoform Expression. Widespread
and biased changes in alternative splicing occurred rapidly during
sample incubation, such as preferential skipping of cassette exons
and an increased number of unspliced introns (Fig. 1 D and F).
These changes were not limited to annotated alternative splicing
events. We anecdotally noticed that many time-dependent changes
in splicing gave rise to isoforms encoding unspliced or abnormally
spliced isoforms of coding genes (Fig. S3A). We tested whether
this effect occurred genome-wide by searching for abnormal al-
ternative splicing of ∼160,000 splice junctions annotated as con-
stitutive in the UCSC Genome Browser (32). We found that ∼5%
of normally constitutively spliced junctions produced increased
levels of unspliced or misspliced products after only 4 h of in-
cubation, rising to >20% after 48 h (Fig. 3A).
We next tested whether such abnormal isoforms appear in

public leukemic datasets, potentially reflecting artifacts caused
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by sample incubation. We compared four distinct acute lym-
phocytic leukemia and CLL datasets to our 0h PBMCs and
identified candidate cancer-specific isoforms for each dataset. A
total of >400 such candidate cancer-specific isoforms were
shared between all four leukemic datasets. Of those, >300 were
likewise up-regulated in the 24h PBMC sample, whereas only
117 were present exclusively in the leukemic datasets (Fig. 3B).

RNA Surveillance Is Inhibited in Leukemic Transcriptomes. Why do
novel isoforms rapidly appear when whole blood is incubated?
The vast majority of unspliced or misspliced products arising
from constitutive junctions contain premature termination
codons. Many such abnormal isoforms are produced at low basal
levels in cells due to the stochastic nature of splicing, but are
normally degraded by nonsense-mediated decay (NMD), which
degrades RNAs containing premature termination codons dur-
ing the pioneer round of translation (Fig. S3B).
To test whether the appearance of novel isoforms is likely due

to reduced NMD efficiency, we quantified global levels of pre-
dicted NMD substrates generated by cassette exon splicing. We
observed a 6.6-fold enrichment for up- vs. down-regulation of
NMD substrates after 4 h of sample incubation, rising to 11.2-
fold after 48 h (Fig. 3C). NMD substrates generated by every
class of alternative splicing were similarly up-regulated, including
49% of all NMD-inducing intron retention events (Fig. 3D).
To determine whether this NMD inhibition likely affects leu-

kemia genomics studies, we measured NMD substrate levels
within four lymphoid (20–23) and six myeloid (22, 24–26) leuke-
mia datasets. Our 0h PBMCs and normal bone marrow exhibited
similar levels of NMD substrates. In contrast, almost every leukemia
dataset exhibited increased levels of NMD substrates relative to
control PBMCs or bone marrow (Fig. 3E). Levels of NMD sub-
strates were independent of clinical variables such as the origin of
the leukemic cells (bone marrow or peripheral blood), percentage
of blasts, and disease state at the time of collection (diagnosis or
relapse) (Fig. S3C). The TCGA AML dataset was a notable ex-
ception, probably because samples were rapidly collected and pro-
cessed at the same institution, and therefore fewer were subject to
artifacts introduced by sample incubation (24). Neither lym-
phomas (29, 30) nor solid tumors (TCGA) exhibited globally
higher levels of NMD substrates relative to normal controls
(PBMCs or patient-matched uninvolved tissue).

Splicing Biomarkers Detect and Quantify Incubation. Incubation
time is typically not available in the sample metadata associated
with published leukemia genomics studies and may not be recor-
ded in the clinical annotation stored by biorepositories. Therefore,
we sought to find biomarkers of ex vivo incubation that could be
used to quantify the effects of incubation in incompletely anno-
tated blood samples. We identified 27 alternative splicing events
that changed monotonically and dramatically during our PBMC
time course, such as cassette exons within PHF20 and LEF1 (Fig.
1F, Fig. S4A, and Dataset S3). We used splicing events as bio-
markers because alternative splicing measurements are insensitive
to total gene expression levels, which are frequently cell type or
dataset-specific. For example, LEF1 gene expression depends
upon the lymphocyte fraction of a blood draw, but the inclusion
of a specific LEF1 exon is likely more robust to these differ-
ences. We restricted to splicing events that were not predicted
to trigger NMD because NMD substrates are typically more
difficult to quantify due to their low abundance.
To test the utility of these 27 splicing events as incubation

biomarkers, we performed unsupervised clustering of our PBMC
time series with 123 lymphoid and 342 myeloid leukemia sam-
ples. This clustering correctly ordered the PBMC samples by
incubation time and, furthermore, ordered the leukemic samples
by the genome-wide level of NMD substrates in each sample (Fig.
4A). As we selected our splicing biomarkers to be insensitive to

NMD, these data suggest that RNA splicing and surveillance
change concordantly during incubation. We conclude that a rel-
atively small set of splicing biomarkers is useful for quantifying
the effects of sample incubation.

Ice Ameliorates Incubation-Induced Dysregulation. The pleiotropic
biases that we describe could be reduced in future studies by
rapidly processing samples. However, TCGA’s single-center ap-
proach for AML is not feasible for many studies. Similarly, com-
mercially available PAXgene collection tubes or similar products
rapidly stabilize RNA (9, 15, 33), but also prevent isolation of
specific cell populations with a Ficoll gradient or flow sorting.
Therefore, we tested the simple expedient of placing whole blood
on ice immediately after collection by a phlebotomist. Incubating
samples on ice dramatically reduced the rate of time-dependent
changes in the transcriptome. The magnitude of differential gene
expression and alternative splicing after 48 h on ice was approxi-
mately equivalent to changes observed after storage for 4 h at room
temperature (Fig. 4B).

Discussion
The most surprising aspect of our study is not that changes occur
during ex vivo incubation, but rather that these changes affect so
many facets of the gene expression process. Pseudogenes, anti-
sense RNAs, novel coding isoforms, and RNA surveillance are of
current interest in cancer biology, and all are dysregulated by
sample incubation. The molecular origins of incubation-induced
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Fig. 4. Sample incubation can be detected with biomarkers and amelio-
rated by ice. (A, Upper) Unsupervised clustering of normal PBMCs and bone
marrow (orange), lymphoid leukemias (green), and myeloid leukemias
(purple), based on a panel of 27 cassette exons with the largest splicing
changes after 24 and 48 h (Dataset S3). Shading indicates exon inclusion
(white, 0%; black, 100%). (Lower) Log2 accumulation of NMD substrates for
the samples indicated in Upper. (B) Numbers of differentially expressed
coding (Left) and noncoding (Center) genes and percent differentially
spliced cassette exons (Right). Solid lines, whole blood incubated at room
temperature; dashed lines, incubation on ice. Lines are averaged across
donors 3 and 4.
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changes in the transcriptome are unclear, but are probably not
due to RNA degradation alone. RIN measurements do not
change substantially during our time course (Fig. 1C), potentially
because our samples are stored as whole blood (34). Further-
more, many previously low-abundance isoforms become highly
expressed, consistent with de novo transcription (Fig. 3). We used
the IPA software to identify potential upstream regulators of genes
exhibiting differential expression after 24–48 h of ex vivo incubation.
The identified regulatory factors included cytokines, growth factors,
and transcriptional regulators, and select downstream transcrip-
tional targets were down- or up-regulated as incubation proceeded
(Fig. S4 B and C). Many gene expression changes may also be by-
products of the widespread inhibition of NMD, which normally
degrades many coding RNAs, as well as abnormal RNAs such as
transcribed pseudogenes and antisense RNAs. NMD inhibition may
in turn be due to translation inhibition or incubation-associated
cellular stresses such as hypoxia (35).
In addition to obscuring cancer-specific alterations, sample in-

cubation can confound subgroup analyses or comparisons of dif-
ferent diseases. Sample incubation time may correlate with clinical
parameters, such as time to treatment or diagnosis vs. relapse, or
systematically differ between studies. For example, studies of rare
diseases such as pediatric cancers frequently rely upon a worldwide
network of clinics, whereas studies of common disorders may be
highly centralized. Our findings may additionally have implications
for studies of other diseases that rely upon blood collection, such as
infectious or autoimmune diseases.
Because sample incubation alters biologically relevant pro-

cesses, how can we identify true cancer-specific alterations?
Standardizing collection procedures may prove helpful for future
studies, but will not aid studies that rely upon existing bio-
repositories. One possibility is to statistically detect and correct
for incubation-induced artifacts, potentially by using our proposed

panel of alternatively spliced exons (Fig. 4B). Another productive
path forward might be to increase the relative resources devoted
to characterizing “normal” control tissues. Most large-scale leu-
kemia genomics studies characterize tens or hundreds of cases, but
only a few controls. The scarcity of control samples is justified by
the assumption that variation between individual tumors is large,
whereas variation between normal tissue samples is comparatively
small. However, the increasing appreciation of transcriptional
variation in healthy tissues, as well as our study’s demonstration
that perceived intertumor variability can be augmented by disease-
irrelevant technical differences, suggest that further characterizing
control cells from diverse sources will be productive.

Materials and Methods
Whole blood was collected and PBMCs were isolated using a Ficoll gradient
at specified time points. RNA-sequencing (RNA-seq) libraries were generated
by using the Illumina TruSeq kit, with modifications. Reads were mapped to
all genes and splice junctions from UCSC knownGene and the Ensembl 71
gene annotation. See SI Materials and Methods for detailed information
about data generation and processing. The RNA-seq data have been sub-
mitted to the NCBI Gene Expression Omnibus database (www.ncbi.nlm.nih.
gov/geo/) under accession nos. GSE58335 and GSE61410.
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