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SUMMARY

Toward development of a precision medicine
framework for metastatic, castration-resistant pros-
tate cancer (mCRPC), we established a multi-institu-
tional clinical sequencing infrastructure to conduct
prospective whole-exome and transcriptome se-
quencing of bone or soft tissue tumor biopsies
from a cohort of 150 mCRPC affected individuals.
Aberrations of AR, ETS genes, TP53, and PTEN
were frequent (40%–60% of cases), with TP53 and
AR alterations enriched in mCRPC compared to
primary prostate cancer. We identified new genomic
alterations in PIK3CA/B, R-spondin, BRAF/RAF1,
APC, b-catenin, and ZBTB16/PLZF. Moreover, aber-
rations of BRCA2, BRCA1, and ATM were observed
at substantially higher frequencies (19.3% overall)
compared to those in primary prostate cancers.
89% of affected individuals harbored a clinically
actionable aberration, including 62.7% with aberra-
tions in AR, 65% in other cancer-related genes, and
8% with actionable pathogenic germline alterations.
This cohort study provides clinically actionable infor-
mation that could impact treatment decisions for
these affected individuals.

INTRODUCTION

Prostate cancer is among the most common adult malig-
nancies, with an estimated 220,000 American men diagnosed
yearly (American Cancer Society, 2015). Some men will develop
metastatic prostate cancer and receive primary androgen
deprivation therapy (ADT). However, nearly all men with meta-
static prostate cancer develop resistance to primary ADT, a
state known as metastatic castration-resistant prostate cancer
(mCRPC). Multiple ‘‘second generation’’ ADT treatments, like
abiraterone acetate (de Bono et al., 2011; Ryan et al., 2013)
and enzalutamide (Beer et al., 2014; Scher et al., 2012), have
emerged for mCRPC affected individuals; however, nearly all
affected individuals will also develop resistance to these agents.
In the U.S., an estimated 30,000 men die of prostate cancer
yearly.

Multiple studies have identified recurrent somatic mutations,
copy number alterations, and oncogenic structural DNA
rearrangements (chromoplexy) in primary prostate cancer
(Baca et al., 2013; Barbieri et al., 2012; Berger et al., 2011;

Cooper et al., 2015; Pflueger et al., 2011; Taylor et al., 2010;
Tomlins et al., 2007; Wang et al., 2011). These include point
mutations in SPOP, FOXA1, and TP53; copy number alterations
involving MYC, RB1, PTEN, and CHD1; and E26 transforma-
tion-specific (ETS) fusions, among other biologically relevant
genes. Although certain primary prostate cancer alterations
or signatures have prognostic clinical significance (Hieronymus
et al., 2014; Lalonde et al., 2014), the therapeutic impact
of primary prostate cancer genomic events has not yet been
realized.
Genomic studies of metastatic prostate cancers demon-

strated additional alterations in AR (Taplin et al., 1995) and in
the androgen signaling pathway (Beltran et al., 2013; Grasso
et al., 2012; Gundem et al., 2015; Hong et al., 2015), although
these studies were performed predominantly using autopsy
samples or preclinical models with limited cohort sizes. Prospec-
tive genomic characterization of fresh biopsy samples from living
mCRPC affected individuals has been limited due to challenges
in obtaining adequate tumor tissue, especially from bone bi-
opsies (Mehra et al., 2011; Van Allen et al., 2014a), which is the
most common site of metastatic disease. Thus, the landscape
of genomic alterations in mCRPC disease remains incompletely
characterized. Moreover, the low frequency of actionable
genomic alterations in primary prostate cancer has limited the in-
clusion of mCRPC among cohorts wherein precision cancer
medicine approaches have been piloted to guide treatment or
clinical trial enrollment.
We conducted a systematic and multi-institutional study

of mCRPC tumors obtained from living affected individuals
to determine the landscape of somatic genomic alterations
in this cohort, dissect genomic differences between primary
prostate cancer and mCRPC, and discover the potential
relevance of these findings from a biological and clinical
perspective.

RESULTS

Clinical, Biopsy, and Pathology Parameters
An international consortium consisting of eight academic medi-
cal center clinical sites was established to capture fresh clinical
mCRPC affected individual samples as part of standard-of-care
approaches or through a cohort of prospective clinical trials (Fig-
ures 1A and 1B). Standard-of-care approaches for mCRPC
included abiraterone acetate or enzalutamide. Clinical trials
included in this study focused on combination strategies
involving abiraterone acetate or enzalutamide, inhibitors of
poly ADP ribose polymerase (PARP), or inhibitors of aurora ki-
nase. Here, we report the results of genomic profiling from
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mCRPC biopsy samples obtained at time of entry into the
cohort study. Future reports will include longitudinal clinical
data such as treatment response. The consortium utilized two
sequencing and analysis centers, one centralized digital
pathology review center, and one centralized data visualiza-
tion portal (Cerami et al., 2012; Gao et al., 2013; Robinson
et al., 2011; Thorvaldsdóttir et al., 2013). Cross-validation of
sequencing data from the two original sequencing sites demon-
strated comparable variant calls for adequately powered genetic
loci (E.M.V.A., D.R., C. Morrissey, C.C.P., S.L. Carter, M. Rosen-
berg, A. McKenna, A.M.C., L.A.G., and P.S.N., unpublished
data).
Here, we describe 150 affected individuals with metastatic

disease with complete integrative clinical sequencing results
(whole-exome, matched germline, and transcriptome data) (Fig-
ure 1C) and summarized in Table S1. 189 affected individuals
were enrolled in the study, and 175 cases were sequenced after
pathology review and assessment of tumor content. Of these,
150 biopsies had >20% tumor content as defined by computa-

tional analysis, based on mutant allele variant fractions and
zygosity shifts. The biopsies sequenced were from lymph node
(42%), bone (28.7%), liver (12.7%), and other soft tissues
(16.7%). Baseline clinical information is available in Table S2. A
majority of cases (96.4%) displayed typical high-grade prostate
adenocarcinoma features, whereas 2.9% of cases showed
neuroendocrine differentiation. One case (0.7%) exhibited
small-cell neuroendocrine features (Epstein et al., 2014)
(Figure 1D).

Landscape of mCRPC Alterations
Somatic aberrations in a panel of 38 statistically or clinically sig-
nificant genes are illustrated in Figure 2. Mean target coverage
for tumor exomes was 1603 and for matched normal exomes
was 1003. Although the average mutation rate for mCRPC
was 4.4 mutations/Mb, there were four cases that exhibited a
mutation rate of nearly 50 per Mb, three of which are likely due
to alterations in the mismatch repair genes MLH1 and MSH2,
as discussed later.

Figure 1. Overview of the SU2C-PCF IDT Multi-Institutional Clinical Sequencing of the mCRPC Project
(A) Schema of multi-institutional clinical sequencing project work flow.

(B) Clinical trials associated with the SU2C-PCF mCRPC project.

(C) Biopsy sites of the samples used for clinical sequencing.

(D) Histopathology of the cohort. Representative images of morphological analysis of mCRPC are shown along with prevalence in our cohort.
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Frequent copy number gains of 8q, as well as copy number
losses of 8p, 13q, 16q, and 18q, were also observed. The
mean number of identified biologically relevant genetic aberra-
tions per case was 7.8 (Figure 2). All mutations identified are pre-
sented in Table S3. The landscape of copy number alterations
demonstrated expected recurrent amplification peaks (frequent
AR, 8q gain) and deletion peaks (CHD1, PTEN, RB1, TP53) (Fig-
ure 3A). Additional frequent focal amplifications were observed
in regions encompassing CCND1 and PIK3CA and PIK3CB. A
new recurrent focal homozygous deletion event was observed
in chr11q23, encompassing the transcriptional repressor
ZBTB16.

To identify gene fusions, analysis of 215 transcriptome
libraries derived from the 150 tumor RNAs was performed and
identified 4,122 chimeras with at least 4 reads spanning the

fusion junction. These fusion junctions resulted from 2,247
gene pairs, an average of 15 gene fusions per tumor (Table
S4). Among chimeric fusion transcripts identified, recurrent
ETS fusions (Tomlins et al., 2005) were observed in 84 cases
(56%), of which the majority were fused to ERG and others
to FLI1, ETV4, and ETV5 (Figure 3B). In addition, potential clini-
cally actionable fusions (involving BRAF, RAF1, PIK3CA/B, or
RSPO2) were seen in eight cases (Figure S1 and covered
subsequently).
To place the mCRPCmutation landscape in the context of pri-

mary prostate cancer somatic genomics, we performed a selec-
tive enrichment analysis to compare somatic point mutations
and short insertion/deletions observed in this cohort with those
observed in somatic whole-exome mutation data from 440 pri-
mary prostate cancer exomes (Barbieri et al., 2012; The Cancer

Figure 2. Integrative Landscape Analysis of Somatic and Germline Aberrations in Metastatic CRPC Obtained through DNA and RNA
Sequencing of Clinically Obtained Biopsies
Columns represent individual affected individuals, and rows represent specific genes grouped in pathways. Mutations per Mb are shown in the upper histogram,

and incidence of aberrations in the cohort is in the right histogram. Copy number variations (CNVs) common tomCRPC are shown in in the lower matrix, with pink

representing gain and light blue representing loss. Color legend of the aberrations represented including amplification, two copy loss, one copy loss, copy neutral

loss of heterozygosity (LOH), splice site mutation, frameshift mutation, missense mutation, in-frame indel, and gene fusion. Cases with more aberration in a gene

are represented by split colors.
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Genome Atlas, 2015) (Figure 3C and Table S5). Focusing on
genes previously implicated in cancer (n = 550), somatic TP53
mutations were the most selectively mutated (q < 0.001; Benja-
mini-Hochberg), followed by AR, KMT2D, APC, BRCA2, and
GNAS (q < 0.1; Benjamini-Hochberg; Table S6). Both AR and
GNAS were mutated exclusively in mCRPC. We found no genes
selectively mutated in primary prostate cancer compared to
mCRPC.
We identified an established biological ‘‘driver’’ aberration

in a cancer-related gene (i.e., known oncogene or tumor sup-
pressor; Table S7) in nearly all the cases (Figure 3D). Although
99% of the mCPRC cases harbored a potential driver single-
nucleotide variant (SNV) or indel, other classes of driver aberra-
tions were also highly prevalent. These include driver gene
fusions in 60%, driver homozygous deletions in 50% and
driver amplifications in 54%. Although informative mutations
were present in virtually all mCRPC cases, 63% harbored
aberrations in AR, an expected finding in castrate-resistant

disease but with higher frequency than in prior reports (Fig-
ure 3E). Interestingly, even when AR was not considered,
65% of cases harbored a putatively clinically actionable alter-
ation (defined as predicting response or resistance to a ther-
apy, having diagnostic or prognostic utility across tumor types)
(Table S8) (Roychowdhury et al., 2011; Van Allen et al., 2014c).
Non-AR related clinically actionable alterations included aber-
rations in the PI3K pathway (49%), DNA repair pathway
(19%), RAF kinases (3%), CDK inhibitors (7%), and the WNT
pathway (5%). In addition to somatic alterations, clinically
actionable pathogenic germline variants were seen in 8% of
mCRPC affected individuals, potentially emphasizing the need
for genetic counseling in affected individuals with prostate
cancer.

Genomically Aberrant Pathways in mCRPC
Integrative analysis using both biological and statistical frame-
works (Lawrence et al., 2013, 2014) of somatic point mutations,

Figure 3. Classes of Genomic Aberrations Seen in mCPRC
(A) Copy number landscape of the SU2C-PCF mCRPC cohort. Individual chromosomes are represented by alternating colors, and key aberrant genes are

indicated.

(B) The gene fusion landscape of mCRPC. Pie chart of all driver fusions identified and the box plot represents specific ETS fusions.

(C) Mutations enriched in mCRPC relative to hormone naive primary prostate cancer. Primary prostate cancer data derived from published studies (Barbieri et al.,

2012; The Cancer Genome Atlas, 2015). Level of CRPC enrichment is represented by the x axis, andMutSig CRPC significance analysis is provided by the y axis.

Diameters are proportional to the number of cases with the specific aberration. Genes of interest are highlighted.

(D) Classes of driver aberrations identified in mCRPC.

(E) Classes of clinically actionable mutations identified in mCRPC.
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short insertion/deletions, copy number alterations, fusion tran-
scripts, and focused germline variant analysis identified discrete
molecular subtypes of mCRPC (Figure 2). These subtypes were
classified based on alteration clustering and existing biological
pathway knowledge and implicated the AR signaling pathway,
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), WNT,
DNA repair, cell cycle, and chromatin modifier gene sets, among
others. The most frequently aberrant genes in mCRPC included
AR (62.7%), ETS family (56.7%), TP53 (53.3%), and PTEN
(40.7%) (Figure 2).

AR Signaling Pathway
In aggregate, 107/150 (71.3%) of cases harbored AR pathway
aberrations, the majority of which were direct alterations
affecting AR through amplification and mutation (Figure 4A).

Figure 4B summarizes the key genes altered in AR signaling,
including AR itself, FOXA1 as a pioneer transcription factor,
NCOR1/2 as negative regulators of AR, SPOP as a putative
androgen receptor transcriptional regulator (Geng et al., 2013),
and ZBTB16 as an AR inducible target gene that may also nega-
tively regulate AR. Recurrent hotspot mutations in AR were
observed at residues previously reported to confer agonism to
AR antagonists such as flutamide (T878A) and bicalutamide
(W742C), as well as to glucocorticoids (L702H). Some, but not
all, of these affected individuals had documented prior expo-
sures that could explain enrichment for these mutations. Addi-
tional clinical data collection is ongoing (Figure 4C). Rare AR
mutations not previously described were seen in our cohort,
although these are of unclear functional significance. Further-
more, one affected individual (Case 89) harbored two putatively

Figure 4. Aberrations in the AR Pathway Found in mCRPC
(A) Cases with aberrations in the AR pathway. Case numbering as in Figure 2.

(B) Key genes found altered in the AR pathway of mCRPC. DHT, dihydrotestosterone.

(C) Point mutations identified in AR. Amino acids altered are indicated. NTAD, N-terminal activation. DBD, DNA-binding. LBD, ligand binding.

(D) Splicing landscape ofAR in mCRPC. Specific splice variants are indicated by exon boundaries, and junction read level is provided. SU2C, thismCRPC cohort.

PRAD tumor, primary prostate cancer from the TCGA. PRAD normal, benign prostate from the TCGA.

(E) Homozygous deletion of ZBTB16. Copy number plots with x axis representing chromosomal location and the y axis referring to copy number level. Red outline

indicates region of ZBTB16 homozygous loss.
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functional AR mutations (T878A and Q903H), which may further
suggest intra-tumor heterogeneity emerging in the CRPC
setting (Carreira et al., 2014). Analysis of AR splice variants
from RNA-seq data demonstrated a distribution of splice vari-
ants observed throughout these mCRPC tumor cases (Fig-
ure 4D). Analysis of the TCGA prostate dataset revealed that
many of these variants were also present at varying levels in pri-
mary prostate cancer and benign prostate tissue. AR-V7, which
has been implicated in abiraterone acetate and enzalutamide
resistance (Antonarakis et al., 2014), was observed in a majority
of pre-abiraterone/enzalutamide cases but at very low ratios
relative to full length AR. Implications for treatment response
are unknown at this time.
In addition to AR mutations itself, we observed alterations in

AR pathway members (Figure 4A). These included known alter-
ations inNCOR1,NCOR2, and FOXA1 that have been previously
reported in primary prostate cancers andmCRPC (Barbieri et al.,
2012; Grasso et al., 2012). In this cohort, truncating and
missense mutations in FOXA1 form a cluster near the end of
the Forkhead DNA binding domain (Figure S2).
Recurrent homozygous deletions of the androgen-regulated

gene ZBTB16 (also known as PLZF) were seen in 8 (5%) cases
(Figure 4E) not previously reported in clinical mCRPC biopsies.
Analysis of the minimally deleted region seen in this cohort nar-
rowed the candidate genes in the chr11q23 region to ZBTB16
(Figure S3). ZBTB16 has been previously implicated in prostate
cancer tumorigenesis and androgen resistance in preclinical
models (Cao et al., 2013; Kikugawa et al., 2006), with loss of
ZBTB16 upregulating the MAPK signaling pathway (Hsieh
et al., 2015).

New PI3K Pathway Discoveries
The PI3K pathway was also commonly altered, with somatic al-
terations in 73/150 (49%) of mCRPC affected individuals (Fig-
ure 5A). This included biallelic loss of PTEN, as well as hotspot
mutations, amplifications and activating fusions in PIK3CA,
and p.E17K activating mutations in AKT1 (Figure S2). Of note,
PIK3CA amplifications resulted in overexpression compared to
the remaining cohort (Figure S3).
Interestingly, mutations in another member of the PI3K cata-

lytic subunit, PIK3CB, were observed in this cohort for the first
time, at equivalent positions to canonical activating mutations
in PIK3CA (Figure 5B). PIK3CB mutations appeared in the
context of PTEN-deficient cases, which is consistent with a pre-
vious report demonstrating that some PTEN-deficient cancers
are dependent on PIK3CB, rather than PIK3CA (Wee et al.,
2008). Furthermore, two affected individuals harbored fusions
involving PIK3CA/B, with these events resulting in overexpres-
sion of the gene relative to other tumors in the cohort (Figures
5C and 5D).

New Wnt Pathway Discoveries
27/150 (18%) of our cases harbored alterations in the Wnt
signaling pathway (Figure 6A). Hotspot activating mutations in
CTNNB1 were seen (Figure 6B), as previously described (Voel-
ler et al., 1998). Notably, recurrent alterations in APC were also
observed, which have not been previously described in clinical
mCRPC affected individuals. This prompted a broader exami-

nation of Wnt signaling genes (Figure 6B). Through integrative
analysis, we identified alterations in RNF43 and ZNRF3, which
were recently described in colorectal, endometrial, and adreno-
cortical cancers (Assié et al., 2014; Giannakis et al., 2014) and
were mutually exclusive with APC alterations (Figure 6A). More-
over, we also discovered R-spondin fusions involving RSPO2,
as previously observed in colorectal carcinoma (Seshagiri
et al., 2012) in association with RSPO2 overexpression in these
cases (Figure 6C). RSPO2 is a key factor in prostate cancer or-
ganoid methodology (Gao et al., 2014). Affected individuals s
with aberrations in RNF43, ZNRF3, or RSPO2 (overall 6% of
affected individuals) are predicted to respond to porcupine in-
hibitors (Liu et al., 2013).

Cell-Cycle Pathway
We observed RB1 loss in 21% of cases (Figure S4). Expanding
the scope of cell-cycle genes implicated in mCRPC, we noted
focal amplifications involving CCND1 in 9% of cases, as well
as less common (< 5%) events in CDKN2A/B, CDKN1B, and
CDK4 (Figure S4). Cell-cycle derangement, such as through
CCND1 amplification or CDKN2A/B loss, may result in enhanced
response to CDK4 inhibitors in other tumor types (Finn et al.,
2015), and preclinical mCRPC models predict similar activity in
prostate cancer (Comstock et al., 2013).

DNA Repair Pathway
Integrative analysis of both the somatic and pathogenic germline
alterations in BRCA2 identified 19/150 (12.7%) of cases with
loss of BRCA2, of which !90% exhibited biallelic loss (Fig-
ure 7A). This was commonly a result of somatic point mutation
and loss of heterozygosity, as well as homozygous deletion.
One of the clinical trials in our consortium is evaluating poly(-
ADP-ribose) polymerase (PARP) inhibition in unselected
mCRPC affected individuals. Importantly, multiple affected indi-
viduals in this trial who experienced clinical benefit harbored
biallelic BRCA2 loss, providing further evidence of clinical ac-
tionability (Mateo et al., 2014). Eight affected individuals
(5.3%) harbored pathogenic germline BRCA2 mutations (Fig-
ure 7B) with a subsequent somatic event that resulted in biallelic
loss, revealing a surprisingly high frequency relative to primary
prostate cancer.
We therefore expanded the focus to other DNA repair/recom-

bination genes and identified alterations in at least 34/150
(22.7%) of cases. These include recurrent biallelic loss of
ATM (Figure 7B), including multiple cases with germline patho-
genic alterations. ATM mutations were also observed in
affected individuals who achieved clinical responses to PARP
inhibition (Mateo et al., 2014). In addition, we noted events in
BRCA1, CDK12, FANCA, RAD51B, and RAD51C. If aberrations
of BRCA2, BRCA1, and ATM all confer enhanced sensitivity to
PARP inhibitors, 29/150 (19.3%) of mCRPC affected individuals
would be predicted to benefit from this therapy. Interestingly,
three out of four mCRPC tumors exhibited hypermutation and
harbored alterations in the mismatch repair pathway genes
MLH1 or MSH2 (Figures 2 and 7C), corroborating a recent
report identifying structural alterations in MSH2 and MSH6
mismatch repair genes in hypermutated prostate cancers
(Pritchard et al., 2014).
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DISCUSSION

To effectively implement precision cancer medicine, prospective
identification of predictive biomarkers should be performed with
information derived from the most contemporary tumor assess-
ments that reflect the affected individual’s prior therapies and
treatment opportunities. In mCRPC, precision cancer medicine
activities have been limited by difficulties obtaining clinical sam-
ples frommCRPC affected individuals and a lack of comprehen-
sive genomic data for potentially actionable alterations. By
demonstrating the feasibility of prospective genomics inmCRPC
and defining the mutational landscape in a focused metastatic
clinical cohort, this reportmay informmultiple genomically driven

clinical trials and biological investigations into key mediators of
mCRPC. In nearly all of the mCRPC analyzed in this study, we
identified biologically informative alterations; almost all harbored
at least one driver SNV/indel, and approximately half harbored a
driver gene fusion, amplification, or homozygous deletion.
Remarkably, in nearly 90% of mCRPC affected individuals, we
identified a potentially actionable somatic or germline event.
The high frequency of AR pathway alterations in this cohort

strongly implies that the vast majority of mCRPC affected
individuals remain dependent on AR signaling for viability. The
‘‘second-generation’’ AR-directed therapies (e.g., abiraterone
acetate and enzalutamide) may select for distinct phenotypes
that may be indifferent to AR signaling, and prospective

Figure 5. Aberrations in the PI(3)K Pathway Found in mCRPC
(A) Cases with aberrations in the PIK3 pathway. Case numbering as in Figure 2.

(B) Point mutations identified in PIK3CB. Amino acids altered are indicated. Analogous, recurrent COSMIC mutations in PIK3CA are shown as expansion views.

(C) Outlier expression of PK3CA in CRPC case harboring the TBL1XR1-PIK3CA gene fusion. Structure of the gene fusion is inset. UTR, untranslated region. CDS,

coding sequence.

(D) As in (C), except for PIK3CB and the ACPP-PIK3CB gene fusion.
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characterization of such cases will be of particular interest. We
hypothesize that affected individuals with acquired AR muta-
tions, including new AR mutations discovered in this cohort,
will harbor differential responses to these second-generation
ADT therapies. As the number of affected individuals in this
cohort with AR mutations increases, we will subsequently be
able to link specific AR mutations with clinical phenotypes to
determine which mutations confer selective response or resis-
tance to subsequent AR-directed therapy.
Moreover, these data identify multiple therapeutic avenues

warranting clinical investigation in the CRPC population.
Excluding AR aberrations, 65% of mCRPC have a potentially
actionable aberration that may suggest an investigational drug
or approved therapy. For example, focusing on the PI3K
pathway, PIK3CB-specific inhibitors may have utility in affected
individuals with mutation, amplification, and/or fusion of this

gene (Schwartz et al., 2015); multiple affected individuals who
achieved durable (>1 year) responses to PIK3CB-specificin inhi-
bition harbored activating mutation or amplification in PIK3CB
(J.S. de Bono et al., 2015, 106th Annual Meeting of the American
Association for Cancer Research, abstract). RAF kinase fusions
in 3% of mCPRC affected individuals would suggest the use of
pan-RAF inhibitors or MEK inhibitors (Palanisamy et al., 2010).
In addition, the emergence of porcupine inhibitors (Liu et al.,
2013) and R-spondin antibodies may warrant investigation in
mCRPC tumors harboring Wnt pathway alterations or specif-
ically R-spondin fusions, respectively. These observations will
need to be prospectively assessed in the clinical trials.
Additionally, biallelic inactivation of BRCA2, BRCA1, or ATM

was observed in nearly 20% of affected individuals. Previous
work in other cancer types suggests that these affected individ-
uals may benefit from PARP inhibitors (Fong et al., 2009;

Figure 6. Aberrations in the WNT Pathway Found in mCRPC
(A) Cases with aberrations in the WNT pathway. Case numbering as in Figure 2.

(B) Aberrations identified in APC and CTNNB1. Amino acids altered are indicated. ARM, armadillo repeat. Phos, phosphorylation domain. TAD, trans-activating

domain. EB1, end binding protein-1 domain. CC, coiled coil.

(C) Outlier expression ofRSPO2 in CRPC and theGRHL2-RSPO2 gene fusion. RNA-seq expression across our CRPC cohort. Structure of the gene fusion is inset.

UTR, untranslated region. CDS, coding sequence.
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Kaufman et al., 2015; Weston et al., 2010) or platinum-based
chemotherapy, and prior reports have implicated the presence
of germline BRCA2 alterations in primary prostate cancer with
poor survival outcomes (Castro et al., 2013). Given the incidence
of pathogenic germlineBRCA2mutations in this cohort with sub-
sequent somatic events (5%), along with enrichment for somatic
BRCA2 alterations in mCRPC (13%), germline genetic testing in
mCRPC affected individuals warrants clinical consideration.

The ability to molecularly characterize mCRPC biopsy sam-
ples from affected individuals actively receiving therapy will
also enable focused studies of resistance to secondary ADT
therapies, including neuroendocrine-like phenotypes. This will
require iterative sampling of pre-treatment and resistant tumors
from matching affected individuals and may warrant multire-

gional biopsies from affected individuals (if feasible) given het-
erogeneity in mCRPC (Carreira et al., 2014; Gundem et al.,
2015). Toward that end, in some affected individuals, we
observed multiple AR mutations emerging in the same biopsy,
whichmay indicate clonal heterogeneity within thesemCRPC tu-
mor samples. Additional genomic alterations discovered in this
cohort (e.g., ZBTB16) warrant exploration in prostate cancer
model systems, including organoid cultures (Gao et al., 2014).
Broadly, our effort demonstrates the utility of applying

comprehensive genomic principles developed for primarymalig-
nancies (e.g., TCGA) to a clinically relevant metastatic tumor
cohort. Our effort may also catalyze multi-institutional efforts to
profile tumors from cohorts of affected individuals with metasta-
tic, treated tumors in other clinical contexts because our results

Figure 7. Aberrations in the DNA Repair Pathway Found in mCRPC
(A) Cases with aberrations in the DNA repair pathway. Case numbering as in Figure 2.

(B) Aberrations identified in BRCA2, ATM, and BRCA1. Amino acids altered are indicated. HELC, helical domain. OB, oligonucleotide binding fold. FAT, FRAP-

ATM-TRRAP domain. PIK3c, PI3 kinase domain. CC, coiled coil. BRC, Brca repeat.

(C) Microsatellite instability analysis of representative hypermutated CRPC cases and non-hypermutated cases.
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demonstrate multiple discoveries within this advanced disease
stage that have not been observed in primary tumor profiling.
Moreover, this study sets the stage for epigenetic and other
profiling efforts in mCRPC not taken in this study, which may
enable biological discovery and have immediate therapeutic
relevance in mCRPC (Asangani et al., 2014). Overall, our efforts
demonstrate the feasibility of comprehensive and integrative ge-
nomics on prospective biopsies from individual mCRPC affected
individuals to enable precision cancer medicine activities in this
large affected individual population.

EXPERIMENTAL PROCEDURES

Affected Individual Enrollment
Affected individuals with clinical evidence of mCRPC who were being consid-

ered for abiraterone acetate or enzalutamide as standard of care, or as part of

a clinical trial, were considered for enrollment. Affected individuals with meta-

static disease accessible by image-guided biopsy were eligible for inclusion.

All affected individuals provided written informed consent to obtain fresh tu-

mor biopsies and to perform comprehensive molecular profiling of tumor

and germline samples.

Biopsies and Pathology Review
Biopsies of soft tissue or bone metastases were obtained under radiographic

guidance. Digital images of biopsy slides were centrally reviewed using

schema established to distinguish usual adenocarcinoma from neuroendo-

crine prostate cancer (Epstein et al., 2014). All images were reviewed by geni-

tourinary oncology pathologists (M.R., J.M.M., L.P.K., S.A.T., R.M., V.R., A.G.,

M.L., R.L., and M.B.).

Sequencing and Analysis
Normal DNAs from buccal swabs, buffy coats, or whole blood were isolated

using the QIAGEN DNeasy Blood & Tissue Kit. Flash-frozen needle biopsies

with highest tumor content for each case, as determined by pathology review,

were extracted for nucleic acids. Tumor genomic DNA and total RNA were pu-

rified from the same sample using the AllPrep DNA/RNA/miRNA kit (QIAGEN)

with disruption on a Tissuelyser II (QIAGEN). RNA integrity was verified on an

Agilent 2100 Bioanalyzer using RNA Nano reagents (Agilent Technologies).

Whole-exome capture libraries were constructed from 100 ng to 1 mg of DNA

from tumor and normal tissue after sample shearing, end repair, and phos-

phorylation and ligation to barcoded sequencing adaptors. Ligated DNA was

size selected for lengths between 200 and 350 bp and subjected to hybrid cap-

ture using SureSelect Exome v4 baits (Agilent). Exome sequence data pro-

cessing and analysis were performed using pipelines at the Broad Institute

and the University of Michigan. A BAM file aligned to the hg19 human genome

build was produced using Illumina sequencing reads for the tumor and normal

sample and the Picard pipeline. Somatic mutation analysis was performed as

described previously (Cibulskis et al., 2013; Van Allen et al., 2014c) and re-

viewed with Integrated Genomics Viewer (IGV) (Robinson et al., 2011).

Copy number aberrations were quantified and reported for each gene as the

segmented normalized log2-transformed exon coverage ratios between each

tumor sample and matched normal sample (Lonigro et al., 2011). To account

for observed associations between coverage ratios and GC content across

the genome, lowess normalization was used to correct per-exon coverage ra-

tios prior to segmentation analysis. Mean GC percentage was computed for

each targeted region, and a lowess curve was fit to the scatterplot of log2-

coverage ratios versus mean GC content across the targeted exome using

the lowess function in R (version 2.13.1) with smoothing parameter f = 0.05.

The resulting copy ratios were segmented using the circular binary segmenta-

tion algorithm (Olshen et al., 2004).

Statistical analysis of recurrently mutated genes was performed using Mut-

Sig (Lawrence et al., 2013). Selective enrichment analysis (Van Allen et al.,

2014b) of mutations observed in mCRPC compared to primary prostate can-

cer was performed by tabulating the frequency of affected-individual-normal-

ized mutations observed in either CRPC or primary prostate cancer and

performing a two-sided Fisher’s exact test using allelic fraction cut off of 0.1

or greater and a set of biologically relevant cancer genes (n = 550 genes) (Fu-

treal et al., 2004). Multiple hypothesis test correction was performed using

Benjamini-Hochberg method.

Transcriptome libraries were prepared using 200–1,000 ng of total RNA.

PolyA+ RNA isolation, cDNA synthesis, end-repair, A-base addition, and liga-

tion of the Illumina indexed adapters were performed according to the TruSeq

RNA protocol (Illumina). Libraries were size selected for 250–300 bp cDNA

fragments on a 3%Nusieve 3:1 (Lonza) gel, recovered using QIAEX II reagents

(QIAGEN), and PCR amplified using Phusion DNA polymerase (New England

Biolabs). Total transcriptome libraries were prepared as above, omitting the

poly A selection step and captured using Agilent SureSelect Human All Exon

V4 reagents and protocols. Library quality was measured on an Agilent 2100

Bioanalyzer for product size and concentration. Paired-end libraries were

sequenced with the Illumina HiSeq 2500, (23100 nucleotide read length)

with sequence coverage to 50 M paired reads and 100 M total reads.

Paired-end transcriptome sequencing reads were aligned to the human

reference genome (GRCh37/hg19) using a RNA-seq spliced read mapper

Tophat2 (Kim and Salzberg, 2011) (Tophat 2.0.4), with ‘‘–fusion-search’’ option

turned on to detect potential gene fusion transcripts. Potential false-positive

fusion candidates were filtered out using ‘‘Tophat-Post-Fusion’’ module.

Further, the fusion candidates were manually examined for annotation and

ligation artifacts. Gene expression, as fragments per kilobase of exon per

million fragments mapped (FPKM; normalized measure of gene expression),

was calculated using Cufflinks (Trapnell et al., 2012).
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