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SUMMARY
CRISPR screens have accelerated the discovery of important cancer vulnerabilities. However, single-gene
knockout phenotypes can be masked by redundancy among related genes. Paralogs constitute two-thirds
of the human protein-coding genome, so existing methods are likely inadequate for assaying a large portion
of gene function. Here, we develop paired guide RNAs for paralog genetic interaction mapping (pgPEN), a
pooled CRISPR-Cas9 single- and double-knockout approach targeting more than 2,000 human paralogs.
WeapplypgPENto twocell typesanddiscover that12%ofhumanparalogsexhibit synthetic lethality in at least
one context. We recover known synthetic lethal paralogs MEK1/MEK2, important drug targets CDK4/CDK6,
and other synthetic lethal pairs including CCNL1/CCNL2. Additionally, we identify ten tumor suppressor pa-
ralog pairs whose compound loss promotes cell proliferation. These findings nominate drug targets and sug-
gest that paralog genetic interactions could shape the landscape of positive and negative selection in cancer.
INTRODUCTION

CRISPR-Cas9 technology has revolutionized functional geno-

mics by enabling high-fidelity, genome-scale, multiplexed loss-

of-function screens in human cells. Because of high specificity

and ease of application, genome-wide CRISPR screens are

increasingly used to identify cancer drug targets and to deter-

mine mechanisms of drug resistance (Bartha et al., 2018; Blo-

men et al., 2015; Hart et al., 2015; Tsherniak et al., 2017; Wang

et al., 2015, 2017). However, single-gene knockout (KO) studies

have a major blind spot: they are unable to assay the function of

paralogs—ancestrally duplicated genes that frequently retain at

least partially overlapping functions. The human genome ex-

hibits a high degree of redundancy as a result of diploidy, gene

duplication, and functional overlap of metabolic and signaling

pathways (Dean et al., 2008; Harrison et al., 2007; Lavi, 2015;

Ohno, 1970). Remarkably, paralogs constitute two-thirds of the

human genome, making this blind spot the rule, not an excep-

tion, and paralogous genes are less likely to be essential for

cell growth than non-paralogous (‘‘singleton’’) genes in CRISPR

KO screens (Wang et al., 2015). This paralog blind spot therefore

obscures our understanding of normal human genome function

and impedes the identification of new cancer drug targets.
This is an open access article under the CC BY-N
Genetic interactions (GIs) between paralogs have been exten-

sively characterized in yeast, revealing fundamental insights

about the differences between whole-genome and small-scale

duplicates, functional groups that are enriched for interacting

paralogs, and paralog mRNA expression patterns (Dean et al.,

2008; Diss et al., 2017; Guan et al., 2007; Harrison et al., 2007).

Essential paralogs that compensate for one another’s function

exhibit ‘‘synthetic lethality,’’ a GI in which elimination of the entire

family is deleterious but individual loss is tolerated. Yeast genet-

icists have defined quantitative measures of GIs, which can

capture both positive (buffering) and negative (synthetic lethal)

interactions (Collins et al., 2006).While paralogGIs are still poorly

characterized in mammalian cells, the extensive degree of dupli-

cation in the human genome is similar to that seen in yeast (Den-

nis and Eichler, 2016; Lan and Pritchard, 2016; Singh et al.,

2012), so experimental evaluation of human cells is likely to

also reveal complex GIs.

Querying the GI space of the human genome has been limited

by current technology; to survey even every possible pairwise

interaction, let alone higher-order interactions, would involve

~200 million unique genetic perturbations. Moreover, the GI

landscape among randomly selected genes is exceedingly

sparse; existing studies of much smaller sets of gene pairs in
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Figure 1. Paralog dependencies are missed

in single-gene CRISPR KO screens

(A) Pie chart of human genes classified based on

whether they are part of a paralog gene family with

10%–99% amino acid sequence identity.

(B) Density plot of CRISPR scores for a single-gene

CRISPR KO screen in PC9 lung adenocarcinoma

cells. Data are from Vichas et al. (2021). Dashed

lines indicate the mean CRISPR score of genes in

each group. **** indicates p < 2.20e�16 by one-

tailed K-S test.

(C) Schematic of the EGFR/Ras/MAPK signaling

pathway.

(D) Dose response curve of PC9-Cas9-

EGFRT790M/L858R lung adenocarcinoma cells

treated with erlotinib, trametinib, or a 1:1 combi-

nation of both drugs. The fraction of viable cells

was determined by CellTiterGlo luminescence

after 96 h of treatment. Data were re-analyzed

froma larger drug screen fromBerger et al. (2016).

(E) Rank plot of CRISPR scores from an

erlotinib sensitization screen in PC9-Cas9-

EGFRT790M/L858R cells (Vichas et al., 2021).MEK1

or MEK2 single-gene KO does not result in

significantly decreased cell growth. Gray dashed

line indicates the threshold for negative selection

(�0.5).
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human cells identified GIs in fewer than 0.1% of unrelated gene

pairs (Han et al., 2017). To proactively identify these rare but

functionally important interactions, research should therefore

focus on high-value sets of genes likely to be enriched for func-

tional interactions, such as paralogs.

Interestingly, the same duplication that makes paralogs diffi-

cult to study provides a tactical advantage for cancer therapy:

the highly rearranged genomes typical of cancer often harbor pa-

ralog deletions and inactivating mutations. Cancer-associated

loss-of-function of one paralog can confer a dependency on

the continued activity of a duplicated pair (De Kegel and Ryan,

2019; Lord et al., 2020; Viswanathan et al., 2018), and this phe-

nomenon has been used to identify synthetic lethal relationships

of paralogs such as MAGOH/MAGOHB (Viswanathan et al.,

2018), ARID1A/ARID1B (Helming et al., 2014), and SMARCA2/

SMARCA4 (Hoffman et al., 2014). If the remaining actively ex-

pressed paralog could be targeted in tumors with loss of its

pair, then tumor cells may show a selective therapeutic window

compared to the surrounding normal cells with expression of

both paralog members. A successful example of a therapy

based on a synthetic lethal interaction is the enhanced sensitivity

to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1-

and BRCA2-mutant tumors (Bryant et al., 2005; Farmer et al.,

2005; Lord and Ashworth, 2017). We hypothesized that paralogs

could provide a rich source of GIs and that direct experimental

identification of synthetic lethal paralogs could therefore enable

future drug discovery efforts.

Recently, several groups have developed innovative methods

for assessing human GIs at scale (Boettcher et al., 2018; Dede

et al., 2020; DeWeirdt et al., 2021; Gier et al., 2020; Gonatopou-

los-Pournatzis et al., 2020; Han et al., 2017; Horlbeck et al., 2018;

Najm et al., 2018; Shen et al., 2017). Consistently, while the over-

all rate of GI among gene pairs is low, many of the interactions
2 Cell Reports 36, 109597, August 31, 2021
identifiedwere in paralogous genes. To comprehensively identify

GIs between human paralogs, we here report our direct experi-

mental evaluation of GIs among 1,030 paralog pairs (2,060

genes) in two human cell contexts. Our analysis not only revealed

an extraordinarily high rate of paralog synthetic lethality, but also

identified positive interactions that nominate 10 paralog pairs as

tumor suppressor gene families.

RESULTS

A paralog blind spot limits discovery of essential genes
and cancer dependencies
The human genome is highly duplicated, with paralogous genes

constituting over two-thirds of protein coding genes (Figure 1A).

Like other groups (Dandage and Landry, 2019; Dede et al., 2020;

Wang et al., 2015), we noticed that paralogous genes are less

likely to be essential for cell growth than non-paralogous

‘‘singleton’’ genes in single-gene CRISPR KO screening data

(p < 2.20e�16 by one-tailed Kolmogorov-Smirnov [K-S] test,

Figure 1B; data from Vichas et al., 2021). Given the utility of tar-

geting cancer-essential genes for therapy, we reasoned that this

paralog blind spot may prevent detection of important druggable

cancer dependencies.

To determine whether known therapeutic vulnerabilities are

missed in CRISPR KO screens, we compared our previous

drug sensitivity profiling of PC9-EGFRL858R/T790M cells (Berger

et al., 2016) to recent genetic vulnerabilities identified in the

same system (Vichas et al., 2021). These cells exhibit resistance

to the epidermal growth factor receptor (EGFR) tyrosine kinase

inhibitor, erlotinib, which can be reversed by treatment with tra-

metinib, a kinase inhibitor of MEK1 and MEK2—protein kinases

encoded by the paralogous genesMEK1 andMEK2 (also known

as MAP2K1/MAP2K2) that are part of the Ras/MAPK pathway



Figure 2. The pgPEN CRISPR library en-

ables GI mapping of 1,030 human paralog

pairs

(A) Schematic of pgPEN screening approach for

paralog GI mapping.

(B) Violin plots of target-level CRISPR scores for

negative control (double non-targeting control),

positive control (single KO pgRNAs targeting

known essential genes), all other single KO

pgRNAs, and DKOpgRNAs in the PC9 screen. The

double-targeting pgRNA group had significantly

lower CRISPR scores than did the single-targeting

pgRNA group (p < 2.20e�16 by one-tailed K-S

test).

(C) Density plot of target-level CRISPR scores for

DKO pgRNAs grouped by whether zero, one, or

both targeted genes are expressed (TPM R 2) in

PC9 cells. Dashed lines indicate the median

CRISPR score for each group. pgRNAs targeting

expressed genes had significantly lower CRISPR

scores than those targeting two unexpressed

genes for both the 2/2 genes expressed (p <

2.20e�16 by one-tailed K-S test) and 1/2 genes

expressed (p = 4.03e�03 by one-tailed K-S test)

groups.

See also Figures S1 and S2 and Tables S1, S2, and

S3.
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(Figures 1C and 1D). The Ras/MAPK pathway is frequently acti-

vated in lung cancer by mutation of upstream receptor tyrosine

kinases such as EGFR or mutation of the Kirsten rat sarcoma vi-

rus (KRAS) gene orMEK1 itself (Arcila et al., 2015; Sanchez-Vega

et al., 2018; Cancer Genome Atlas Research Network, 2014). We

noted in single-gene CRISPR KO data in the same cellular

context that while EGFR and other Ras pathway members such

as GRB2 were essential as expected, neither MEK1 nor MEK2

was essential when knocked out individually (Figure 1E). We

reasoned that paralog redundancy might underlie the apparent

disconnect between the small molecule and genetic assays.

We therefore sought to develop amultiplexed CRISPR approach

to directly probe paralog compensation on a genome scale,

enabling the discovery of many more paralogous drug targets

that may be missed in current CRISPR-based target discovery

efforts.

The pgPEN library enables single KO and DKO of 1,030
human paralog families
To identify synthetic lethal paralogs that could serve as potential

lung cancer drug targets, we focused on duplicated genes—pa-

ralog families of only two genes. We identified paralog families

from Ensembl (Vilella et al., 2009) and then selected families in

which a maximum of two genes shared 50%–99% amino acid

identity (Figure S1A). Next, we designed a paired-guide RNA

(pgRNA) CRISPR library to knock out each paralog alone or in
C

combination with its respective pair. Us-

ing single-guide RNA (sgRNA) sequences

from the Brunello CRISPR library (Doench

et al., 2016), we designed 16 four-by-four

pairwise double KO (DKO) pgRNAs for

each paralog pair. In addition, we de-
signed single KO pgRNAs containing one targeting sgRNA

paired with a non-targeting control sgRNA having no match to

the human reference genome. This was done for both paralogs

to generate a total of 16 single KO pgRNAs. Five hundred double

non-targeting pgRNAs were included as a control. This ‘‘paired

guide RNAs for paralog GI mapping (pgPEN)’’ library (Table S1)

was synthesized and cloned at 1000-fold coverage using previ-

ously developed methods (Gasperini et al., 2017; Thomas et al.,

2020). Next-generation sequencing confirmed that >99.99% of

pgRNAs were present in the cloned plasmid pool. The final

pgPEN library consists of 33,170 pgRNAs targeting 1,030 pa-

ralog pairs (2,060 genes) in single KO and DKO combinations.

Over half of the paralogs in the pgPEN library are unique to this

study, while the remainder were also assayed in recent GI

maps (Dede et al., 2020; Gonatopoulos-Pournatzis et al., 2020;

Thompson et al., 2021; Figure S1B). In total, 554 of the gene

products of pgPEN-targeted genes are considered ‘‘druggable’’

by recent criteria (Finan et al., 2017; Figure S1C).

To map GIs between paralogs, we applied the pgPEN library to

PC9 lung adenocarcinoma cells previously engineered to consti-

tutively express Cas9 (Thomas et al., 2020; Vichas et al., 2021) us-

ing standard pooled CRISPR screening methodology in triplicate

(Figure 2A). pgRNAs that were positively or negatively selected

were identified by Illumina sequencing of pgRNA abundance after

~12 population doublings in vitro compared to the starting abun-

dance in the plasmid pool (Figure 2A). The sequencing strategy
ell Reports 36, 109597, August 31, 2021 3
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used for the pgPENmethod is outlined in Figure S1D, and pgRNA

library coverage and pairing statistics are included in Table S2.

Onlyproperly pairedpgRNAswere included inourCRISPRscreen

analysis. Plasmid pgRNA abundance was highly correlated with

early time point samples taken immediately following lentiviral

transduction and puromycin selection (mean Pearson’s r = 0.93;

Figure S2A). Endpoint samples exhibited expected changes in

pgRNAabundance (FigureS2B) thatwerehighlycorrelatedacross

replicates (mean Pearson’s r = 0.82; Figure S2C). Single KO

pgRNAs targeting pan-essential genes (Meyers et al., 2017)

showed the expected dropout in late timepoint samples (Fig-

ure 2B). These data indicate that the screen was performed

without significant bottlenecking and that the pgRNAs performed

as expected for known essential genes. Similar to previously es-

tablished CRISPR screen analysis methods (Meyers et al.,

2017), we generated normalized CRISPR scores (CS) by scaling

pgRNA log2(fold change) values such that the median CRISPR

scoreofdoublenon-targetingconstructswaszeroand themedian

CRISPR score of pan-essential single KO constructs was �1.

CRISPR-Cas9 gene KO involves the generation of double-

strand breaks that can inhibit cell proliferation rate (Aguirre

et al., 2016). One concern in targeting multiple loci with Cas9 is

that the increased generation of double-strand breaks could, in-

dependent of any specific gene effect, result in enhanced nega-

tive selection of DKO compared to single KO pgRNAs. To control

for this possibility, we further normalized data such that the me-

dian CRISPR score of all single KO pgRNAs targeting non-ex-

pressed genes would be zero and the median CRISPR score of

all DKO pgRNAs targeting two non-expressed genes would be

zero, with unexpressed genes defined as having an abundance

of less than two transcripts per million (TPM) in PC9 RNA-

sequencing (RNA-seq) data (Method details; Figures S2D, S2E,

and 2C). After this normalization, DKO constructs still had signif-

icantly lower CRISPR scores than did single KO constructs (p =

2.20e�16 by one-tailed K-S test), indicative of possible GIs in

the DKO group. As expected, constructs targeting expressed

genes had significantly lower CRISPR scores than those target-

ing unexpressed genes for both single-targeting (p < 1.96e�10

by one-tailed K-S test; Figure S2E) and double-targeting (p <

2.20e�16 by one-tailed K-S test; Figure 2C) constructs. After

normalization, only aminimal effect of paralog copy number (Fig-

ure S2F) on CRISPR score was observed (Figures S2G and S2H).

Scaled CRISPR scores for pgRNAs in the PC9 screen can be

found in Table S3.

Direct identification of paralogGIs in human lung cancer
cells
Using the PC9 CRISPR scores, we calculated GI scores for each

paralog pair under a multiplicative model following recently

developed methods for human GI mapping (DeWeirdt et al.,

2021; Han et al., 2017; Method details). Comparison of the ex-

pected and observed CRISPR scores for each paralog pair

enabled identification of interacting paralogs (Figures 3A and

3B) and calculation of GI scores for each paralog pair (Figures

3C and 3D; Table S4). This approach identified 87 synthetic le-

thal and 68 buffering GIs among the 1,030 paralog pairs. Syn-

thetic lethal interactions (GI < �0.5 and false discovery rate

[FDR] < 0.1) included top pairs CCNL1/CCNL2, CDK4/CDK6,
4 Cell Reports 36, 109597, August 31, 2021
GSK3A/GSK3B, G3BP1/G3BP2, CNOT7/CNOT8, and OXSR1/

STK39 (Figures 3B–3D). Interestingly, CCNL1/CCNL2 code for

cyclins L1 and L2, which activate the paralogous proteins

CDK11A/CDK11B. Active CDK11 is involved in regulating pre-

mRNA splicing and may also play a role in cell-cycle regulation

(Loyer and Trembley, 2020; Loyer et al., 2008). We found

CDK11A/CDK11B were also synthetic lethal in PC9 cells (Fig-

ure 3B), and recent work has shown that CDK11A/CDK11B are

targeted by the small-molecule inhibitor OTS964 (Lin et al.,

2019). OXSR1 and STK39 encode evolutionarily conserved ki-

nases involved in the oxidative stress response, and STK39

has a possible role in promoting apoptosis (Balatoni et al.,

2009; Gagnon and Delpire, 2012). We also found a significant

synthetic lethal interaction for MEK1/MEK2 (Figures 3B–3D),

confirming that the discrepancy between genetic and drug

data in Figure 1 was indeed due to paralog redundancy. Known

synthetic lethal paralogs such as ARID1A/ARID1B (Helming

et al., 2014) and MAPK1/MAPK3 (Dede et al., 2020; DeWeirdt

et al., 2021) were also identified (Table S4).

To experimentally validate these findings, we developed a

competitive fitness assay in red (mCherry) and green (GFP)

labeled PC9-Cas9 cells (Figures S3A–S3D). In designing the vali-

dation experiment for top synthetic lethal paralog pairs, we used

safe-targeting sgRNAs (Morgens et al., 2017) in place of non-tar-

geting sgRNAs to account for the growth effects observed by

generating one versus two double-strand breaks. We trans-

duced PC9-Cas9-GFP-NLS cells with a double safe-targeting

pgRNA, while PC9-Cas9-mCherry-NLS cells were transduced

with paralog-targeting pgRNAs designed to target each paralog

individually or both paralogs together (Table S5). The cells were

then pooled at a 1:1 ratio of GFP:mCherry cells.

Using this approach, we determined the effects of targeting

four top synthetic lethal paralog pairs from the PC9 screen:

CCNL1/CCNL2, CDK4/CDK6, MEK1/MEK2, and OXSR1/

STK39. The results of these competitive fitness assays mirrored

the gene KO effects observed in the pooled screen format

(Figures 4A and 4B). For CCNL1/CCNL2 and OXSR1/STK39, in-

dividual gene KOs showed little effect on cell growth, whereas

combined KO of both paralogs resulted in severe growth effects

in both the screen (Figure 3B) and the competitive fitness assay

(Figure 4A). The CRISPR screen data indicated that CDK4 and

MEK2 single KOs were essential on their own, with the DKO

causing further negative growth effects for each pair (Figure 3B),

and these effects were also observed in the competitive fitness

assays for these pairs (Figure 4A). We validated the synthetic

lethality of these four pairs by confirming that the observed

DKO growth phenotype was significantly less than an expected

DKOgrowth phenotype, whichwas calculated based on the sum

of the two single KO growth effects (p = 9.56e�05 for CCNL1/

CCNL2; p = 5.29e�05 for CDK4/CDK6; p = 2.20e�04 for

MEK1/MEK2; p = 8.49e�05 for OXSR1/STK39; all by one-tailed

t test). Line graphs of growth phenotypes across the entire

competitive fitness assay are shown in Figures S3E–S3H. We

experimentally validated two additional pairs with non-signifi-

cant GIs, MAGOH/MAGOHB and PSMB5/PSMB8, confirming

a slightly negative but non-significant interaction for MAGOH/

MAGOHB and that the PSMB5/PSMB8 DKO growth phenotype

was not significantly less than the expected, summed DKO



Figure 3. pgPEN uncovers synthetic lethal and buffering GIs

(A) Scatterplot of target-level observed versus expected CRISPR scores in the PC9 screen. The solid line is the linear regression line for the negative control (single

KO) pgRNAs, while dashed lines indicate ± 2 residuals.

(B) CRISPR scores for representative synthetic lethal paralog pairs. Data shown are the mean CRISPR score for each single KO or DKO target across three

biological replicates with replicate data shown in overlaid points.

(C) Rank plot of target-level GI scores in PC9 cells. Table insert, top synthetic lethal paralogs based on GI score.

(D) Volcano plot of target-level GI scores in PC9 cells. FDR indicates the multiple hypothesis-adjusted p values from a two-tailed t test (Method details). Blue,

synthetic lethal paralog GIs with GI < �0.5 and FDR < 0.1; red, buffering paralog GIs with GI > 0.25 and FDR < 0.1.

See also Table S4.

Article
ll

OPEN ACCESS
growth phenotype (Figures S3I–S3L). Overall, there was good

concordance between the GIs observed in the pgPEN PC9

CRISPR screen and in the validation competitive growth assays

(Figure S3M).

We also confirmed the successful generation of genomic DNA

CRISPR edits at sgRNA target sites and the loss of target protein

expression for the paralog pairs shown in Figures 4A and 4B.

Confirmation of genomic DNA edits was done by next-genera-

tion sequencing for CCNL1/CCNL2, as we were unable to iden-

tify a suitable antibody for CCNL1 (Figures 4C and S4A–S4D),

and by Sanger sequencing for CDK4/CDK6, MEK1/MEK2, and

OXSR1/STK39 (Figures S4E–S4I). Western blots for CCNL2,

CDK4/CDK6, MEK1/MEK2, and OXSR1/STK39 showed ex-

pected patterns of protein loss based on the pgRNAs expressed

in each cell line (Figure 4C). Taken together, these data suggest
that pgPEN is an effective strategy for uncovering synthetic le-

thal paralog interactions.

A second pgPEN screen identifies shared versus cell-
line-specific paralog synthetic lethal interactions
Next, we applied the pgPEN approach to a different tissue

context, HeLa cervical carcinoma cells, using similar methodol-

ogy, with the exception of using a doxycycline-inducible Cas9

system (Cao et al., 2016). Quality control analyses of HeLa

screening data again indicated successful generation of ex-

pected gene KO phenotypes (Figures S5A–S5J; Table S6).

Calculation of GI scores identified 70 significant synthetic lethal

interactions and 44 significant buffering interactions (Figures 5A,

5B, and S5K; Table S4). Many of the top synthetic lethal pairs

were shared between HeLa and PC9 cells, including CCNL1/

CCNL2, GSK3A/GSK3B, and MEK1/MEK2 (FDR < 0.1 in both
Cell Reports 36, 109597, August 31, 2021 5



Figure 4. CRISPR validation experiments confirm top PC9 synthetic lethal interactions

(A) Boxplots of growth phenotypes for PC9-Cas9-mCherry cells expressing the indicated pgRNA compared to PC9-Cas9-GFP cells expressing a double-safe-

targeting control pgRNA. Boxes indicate mean ± SEM of six biological replicates, which are shown as overlaid points. Growth phenotype is defined as the log2-

scaled ratio of mCherry:GFP cell counts at the late time point compared to the day 1 mCherry:GFP cell counts. Expected DKO phenotypes are the sum of single

KO growth phenotypes. The expected and observed DKO phenotypes were compared using a one-tailed t test. Data shown are for the time point with the most

extreme difference between expected and observed DKO growth phenotypes, termed the late time point: CCNL1/CCNL2 (day 12), CDK4/CDK6 (day 7),MEK1/

MEK2 (day 11), and OXSR1/STK39 (day 10). Full time course data are shown in Figure S3.

(B) Fluorescence microscopy images of competitive fitness assays on early (day 1) and late time points as indicated above for (A). Scale bar, 100 mM.

(C) Western blot validation of single KO and DKO pgRNA-induced gene inactivation. For CCNL1, pie charts of percent mutant alleles based on next-generation

sequencing are shown due to lack of a suitable CCNL1 antibody for western blotting. Additional genomic DNA-level validation data are presented in Figure S4.

See also Figures S3 and S4 and Table S5.
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cell lines; Figures 5C and 5D). Other paralog families were syn-

thetic lethal in only one of the cell lines (FDR < 0.1 in PC9 or

HeLa only). These included SOS1/SOS2, which were highly

essential and synthetic lethal only in HeLa cells (Figures 5C

and 5D), andCDK4/CDK6, which were only required in PC9 cells

(Figures 5C and 5D). In total, 122 paralog pairs were identified as

synthetic lethal in at least one context. Surprisingly, we noted

that cell-line-specific synthetic lethal interactions were often

not explained by expression differences (Figure 5D), demon-

strating that paralog dependencies, like other cancer depen-

dencies, are modified by cellular context or other biological fac-

tors besides gene expression.

Some synthetic lethal paralog pairs, including SEC24A/

SEC24B, COQ10A/COQ10B, CNOT7/CNOT8, TIA/TIAL, and

VPS4/VPS4B, have been highlighted in previous studies (Dede

et al., 2020; Gonatopoulos-Pournatzis et al., 2020; Lord et al.,
6 Cell Reports 36, 109597, August 31, 2021
2020; Neggers et al., 2020; Szyma�nska et al., 2020). However,

to our knowledge,many of the synthetic lethal paralogs identified

in the pgPEN screens were not previously known to be function-

ally redundant in human cells. These includeCCNL1/CCNL2 and

OXSR1/STK39, along with eukaryotic translation initiation fac-

tors EIF1/EIF1B; DNA and RNA helicase and cGAS/STING

pathway members G3BP1/G3BP2; hexosamine biosynthesis

pathway members GFPT1/GFPT2; and PDS5A/PDS5B, which

regulate sister chromatid cohesion during mitosis. Individual

members of many of these synthetic lethal paralog families

have been previously implicated in cancer; for instance, high

GFPT2 expression has been linked to tumor metabolic reprog-

ramming in lung adenocarcinoma (Zhang et al., 2018), and

PDS5B is a negative regulator of cell proliferation and has

been highlighted as a possible tumor suppressor gene in pros-

tate cancer (Maffini et al., 2008).



Figure 5. Identification of cell-line-specific and shared synthetic lethal paralog pairs

(A) Rank plot of target-level GI scores in HeLa cells. Table insert, top synthetic lethal paralogs based on GI score.

(B) Volcano plot of target-level GI scores in HeLa cells. FDR indicates the multiple hypothesis-adjusted p values from a two-tailed t test (Method details). Blue,

synthetic lethal paralog GIs with GI < �0.5 and FDR < 0.1; red, buffering paralog GIs with GI > 0.25 and FDR < 0.1.

(C) Scatterplot of target-level GI scores for paralog pairs in PC9 versus HeLa cells. Blue, synthetic lethal paralog pairs withGI <�0.5 and FDR< 0.1 in either PC9 or

HeLa cells; gray, all paralog pairs with GI R �0.5 or FDR R 0.1.

(D) CRISPR scores for representative synthetic lethal paralog pairs identified in the PC9 and HeLa cell screens. Top row: data shown are the mean CRISPR score

for each single KO or DKO target across three biological replicates with replicate data shown in overlaid points. Shared synthetic lethal paralogs (e.g., CCNL1/

CCNL2 andMEK1/MEK2) have FDR < 0.1 in both cell lines; PC9-specific paralogs (e.g.,CDK4/CDK6 andOXSR1/STK39) have FDR < 0.1 in PC9 only; and HeLa-

specific paralogs (e.g., GFTP1/GFPT2 and SOS1/SOS2) have FDR < 0.1 in HeLa only. Dashed lines indicate CRISPR score < �0.5. Bottom row: paralog gene

expression in PC9 and HeLa cells from RNA-seq analysis. Dashed lines indicate log2(TPM) = 1, the threshold for gene expression.

(E) Boxplots comparing the effect of CRISPR-mediated KO of the indicated gene in DepMap cell lines with high (top quartile) compared to low (bottom quartile)

copy number of its paralogous gene. For boxplots, the middle line, hinges, notches, and whiskers indicate the median, 25th/75th percentiles, 95% confidence

interval, and data points within 1.53 the interquartile range from the hinge, respectively. p values were computed using a two-tailed Wilcoxon rank-sum test.

CRISPR score and copy number data were obtained from DepMap.

(F) As in (E), but for gene expression.

(legend continued on next page)
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As a complementary approach to validate our PC9 and HeLa

screens, we used single gene CRISPR screening data to deter-

mine the essentiality of one paralog in the context of low expres-

sion or spontaneous copy number loss of its pair in hundreds of

cancer cell lines profiled by DepMap (Tsherniak et al., 2017). For

this analysis, we grouped cell lines according to whether ‘‘gene

1’’ of a paralog pair was highly (top quartile) or lowly (bottom

quartile) expressed and calculated the median CRISPR score

for ‘‘gene 2’’ in these groups (Table S7). This strategy was also

used to determine the influence of gene copy number, and the

inverse analysis (i.e., ‘‘gene 1’’ dependency in the context of

low ‘‘gene 2’’ expression/copy number) was also performed.

We found that for VPS4A/VPS4B, CCNL1/CCNL2, and TLK1/

TLK2, reduced copy number of one family member was signifi-

cantly associated with greater dependency of the paralogous

genes (Figure 5E). We observed similar dependencies when

considering gene expression for EIF1/EIF1B, TIA1/TIAL1, and

AP2A1/AP2A2 (Figure 5F). The top 10 shared synthetic lethal pa-

ralogs identified in both PC9 and HeLa screens displayed evi-

dence of GIs using these approaches (Figure 5G; Table S7).

Identification of tumor suppressor paralog pairs
In addition to synthetic lethal interactions, pgPEN screens can

identify positive GIs. We noticed that these positive interactions

include both buffering interactions, where loss of one paralog

prevents the deleterious phenotype of loss of the other—we

identified 108 such interactions in at least one cell context—as

well as cases where the combined loss of both genes synergis-

tically promotes cell growth. The latter are likely to be paralog

families with tumor suppressor functions that require complete

loss of the family to reveal the cellular phenotype. To identify

these tumor suppressor paralogs, we restricted our analysis to

significant buffering interactions (GI > 0.25, FDR < 0.1) between

expressed paralogs in which the DKO was positively enriched in

eachCRISPR screen (CS > 0.25). Under these relatively stringent

criteria, four tumor suppressor interactions were identified in

PC9 and six in HeLa cells (Figure 6A). None of the 10 interactions

were shared across cell lines, potentially reflecting the differing

biology of HeLa and PC9 cells and the difficulty in achieving pos-

itive selection in basal culture conditions of rapidly proliferating

cancer cell lines.

Tumor suppressor pairs identified in PC9 cells include

RAB27A/RAB27B, encoding Rab-family GTPases involved in

vesicle trafficking (Li et al., 2018), and the BTB/POZ-domain

genes BTBD10/KCTD20 (Figure 6B). In HeLa cells, one of the

toppairs identifiedwasCDKN2A/CDK2NB (Figure 6C), frequently

deleted tumor suppressors that encode the CDK4/6 inhibitors

INK4A/ARFand INK4B (KimandSharpless,2006). Another top tu-

mor suppressor paralog pair in HeLa cells was FBXO25/FBXO32

(Figure 6C), which encode SCF-type E3 ligase proteins. Although

little is known about the function of these proteins and their sub-

strates, theGIbetweenFBXO25andFBXO32 suggests that these

two proteins may share similar functions or substrates. FBXO25
(G) Bar plot indicating the p values (computed using a two-tailed Wilcoxon rank-

number (as in E) or gene expression (as in F) of its pair across human cancer cell

lethal in PC9 only, HeLa only, or both cell lines in the pgPEN screens. Dashed lin

See also Figure S5 and Tables S4, S6, and S7.
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and FBXO32 have been individually proposed to have tumor sup-

pressor function in previous studies (Xue et al., 2012; Zhou et al.,

2017).

While this direct identification of tumor suppressor paralog

pairs has merit for understanding basic genome function, spon-

taneous loss of two unlinked genes in cancer should be rare,

and therefore it is unlikely that DKO of paralogs contributes to

tumorigenesis for most paralog families. Interestingly, however,

we noted that two tumor suppressor pairs contained genes co-

located in the same chromosomal locus (Figure 6D). In addition

to CDKN2A/CDKN2B, whose combined loss is well known to

promote tumorigenesis, ZNF561 and ZNF562 are co-located

and reside on chromosome 19p13.2, a frequently deleted region

in uterine corpus endometrial cancer (Berger et al., 2018; Cher-

niack et al., 2017; Figure 6E). Beyond the tumor suppressor paral-

ogs, 13% of all the paralog pairs in the pgPEN library are located

within 1 megabase (Mb) of each other in the human genome

(Figure 6F), which raises the possibility that the cell fitness conse-

quences of DKO of human paralogs could contribute to the

selective forces that drive aneuploidy patterns in human cancer

(Ben-David and Amon, 2020; Taylor et al., 2018).

DISCUSSION

This work provides, to our knowledge, the largest direct experi-

mental assessment of paralog GIs in the human genome to date.

The pgPEN library we developed uses two Cas9-type sgRNAs

driven from independent promoters to enable KO of two paral-

ogs simultaneously and targets 2,060 duplicate human paralogs.

Complementing three other recent studies of human paralog GIs

(Dede et al., 2020; Gonatopoulos-Pournatzis et al., 2020;

Thompson et al., 2021), our library adds over 1,000 unique paral-

ogs and brings the total set of human paralogs assayed to date

to just over 3,900. Both Thompson et al. (2021) and the present

study use Cas9-type CRISPR systems, whereas the other two

studies include Cas12a-derived enzymes. Cas12a systems

have the benefit of using an array of sgRNAs on a single tran-

script that is processed by Cas12a, enabling programmable de-

livery of multiple sgRNAs to the same cell (DeWeirdt et al., 2021).

Continued application of Cas12a for CRISPR screening will

enable the experimental identification of higher-order combina-

torial GIs in human cells. However, for pairwise interactions of

paralogs, the pgPEN library may provide an ease of application

to investigators with Cas9-expressing cell systems already

developed.

Remarkably, our pgPEN screens revealed that 12% of dupli-

cate paralogs exhibit synthetic lethality, demonstrating that

paralogs are a rich source of GIs. A recent meta-analysis of

multiplexed paralog CRISPR screens revealed that this hit

rate was consistent with work published by other groups,

and pairwise comparisons of the four studies showed that

many shared paralogs (i.e., those that were screened by both

groups) were consistently classified as synthetic lethal (De
sum test) obtained by comparing the effect of a single paralog KO to the copy

lines profiled by DepMap. Bar color indicates whether each pair was synthetic

e indicates p = 0.05.



Figure 6. Paralog buffering interactions include tumor suppressor paralogs

(A) Identification of tumor suppressor paralog interactions (GI score > 0.25; FDR < 0.1; CRISPR score > 0.25).

(B) CRISPR scores of PC9-specific tumor suppressor paralog pairs. Data shown are the mean of three biological replicates with replicate data shown in overlaid

points. Dashed lines indicate CRISPR score = 0.25.

(C) CRISPR scores of HeLa-specific tumor suppressor paralog pairs. Data shown as in (B).

(D) Circos plot showing the genomic locations of tumor suppressor paralog pairs. Blue arcs indicate paralog pairs located on different chromosomes, while pink

arcs represent paralog pairs located on the same chromosome.

(E) Top: diagram of a recurrent deletion seen in uterine corpus endometrial carcinoma (UCEC) data from The Cancer Genome Atlas (TCGA) that spans the

genomic locus containing ZNF561 and ZNF562 and a bar plot indicating the deletion frequency. Bottom: diagram of recurrent deletions in epithelial and glial

cancers that span the genomic locus containing CDKN2A and CDKN2B and a bar plot showing the deletion frequency in each cancer subtype.

(F) Genomic distance between paralogs for the 1,030 paralogs pairs included in the pgPEN library in three proximity categories: on different chromosomes, on the

same chromosome but R 1 Mb apart, and on the same chromosome within 1 Mb. Inset: histogram of paralog distance for pairs that are within 1 Mb of one

another.
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Kegel et al., 2021). These findings strengthen our conclusions,

underscoring the importance of simultaneously targeting

redundant genes and demonstrating that a large fraction of

cancer dependencies is missed by current single-gene KO ap-

proaches. Like others (De Kegel and Ryan, 2019; Viswanathan

et al., 2018), we propose that synthetic lethal interactions

among paralogs could be harnessed for cancer therapy, since

the aneuploid genomes typical of cancer cells commonly har-
bor deletions and inactivating mutations in one or more paral-

ogs. Targeting lineage-specific essential paralogs or paralog

families with partial loss in cancer could provide an orthogonal

approach for cancer therapy to be applied in combination with

existing therapies to provide durable cancer control and

improved patient outcomes. In addition, even paralogs that

are not lost in cancer may represent tractable cancer targets;

the same homology and redundancy that complicate genetic
Cell Reports 36, 109597, August 31, 2021 9
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identification of paralogs as cancer dependencies could

enable simultaneous targeting of each protein with ease. This

strategy is exemplified by the current use of small molecules

targeting several of the top synthetic lethal paralogs we identi-

fied, such as CDK4/CDK6 and GSK3A/GSK3B. Indeed, a

recent study demonstrated in cell lines and retrospective clin-

ical analyses that tumors with low CDK6 levels rely on CDK4

expression and show increased sensitivity to CDK4/6 inhibitors

(Wu et al., 2021).

Last, we provide a systematic identification of tumor suppres-

sor paralog pairs. We identified 10 paralog pairs whose com-

bined loss significantly promotes cancer cell line growth.

Although combined loss of some of these pairs is likely to be

rare, 2 of the 10 pairs we identified are located in the same chro-

mosomal locus. Many paralog loci are frequently deleted in can-

cer. These data, therefore, shed light on the basis for the positive

selection of these genome deletions and suggest that combined

paralog loss may shape the landscape of positive and negative

selection in human cancer.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-CCNL2 (Cyclin L2) Novus Biologicals Cat# NB100-87009; RRID: AB_1201144

Rabbit polyclonal anti-OXSR1 (OSR1) Cell Signaling Technology Cat #3729; RRID: AB_2157610

Rabbit polyclonal anti-STK39 (SPAK) Cell Signaling Technology Cat# 2281; RRID: AB_2196951

Mouse monoclonal anti-MEK1 Cell Signaling Technology Cat# 2352; RRID: AB_10693788

Rabbit monoclonal anti-MEK2 Cell Signaling Technology Cat# 9147; RRID: AB_2140641

Rabbit monoclonal anti-CDK4 Cell Signaling Technology Cat# 12790; RRID: AB_2631166

Rabbit monoclonal anti-CDK6 Cell Signaling Technology Cat# 13331; RRID: AB_2721897

Mouse monoclonal anti-vinculin Sigma Cat# V9264; RRID: AB_10603627

Deposited data

Raw and analyzed CRISPR screen data This paper GEO: GSE178179

DepMap Tsherniak et al., 2017 https://depmap.org/portal/

TCGA Copy Number Portal Beroukhim et al., 2010 https://portals.broadinstitute.org/tcga/home

PC9 and HeLa RNA-seq data Thomas et al., 2020 GEO: GSE120703

EnsemblCompara GeneTrees Vilella et al., 2009 https://www.ensembl.org/info/genome/compara/

homology_method.html

Experimental models: Cell lines

Human: PC9-Cas9 cells Thomas et al., 2020 N/A

Human: iCas9/HeLa cells Cao et al., 2016 N/A

Human: PC9-Cas9-mCherry-NLS cells This paper N/A

Human: PC9-Cas9-GFP-NLS cells This paper N/A

Human: HEK293T cells ATCC CRL-3216

Oligonucleotides

All oligos used, see Table S5 This paper N/A

Recombinant DNA

pgPEN plasmid library This paper Addgene: 171172

pLentiGuide-Puro Sanjana et al., 2014 Addgene: 52963

pRRLSIN.cPPT.PGK-GFP.WPRE N/A (unpublished) Addgene: 12252

psPAX2 N/A (unpublished) Addgene: 12260

pCMV-VSV-G (Stewart et al., 2003) Addgene: 8454

Software and algorithms

pgRNA_sequencing_analysis This paper Zenodo: https://doi.org/10.5281/zenodo.5081113

MAGeCK v0.5.9.2 Li et al., 2014 https://sourceforge.net/projects/mageck/

Bowtie v1.2.2 Langmead et al., 2009 https://sourceforge.net/projects/bowtie-bio/; RRID:

SCR_005476

SAMtools v1.9 Li et al., 2009 https://www.htslib.org; RRID: SCR_002105

Tidyverse v1.3.0 Wickham et al., 2019 https://cran.r-project.org/web/packages/

tidyverse/index.html; RRID: SCR_019186

Bioconductor v3.1.0 Huber et al., 2015 https://bioconductor.org/install; RRID: SCR_006442

Gen5 v3.02 BioTek Instruments https://www.biotek.com/products/software-

robotics-software/gen5-microplate-reader-

and-imager-software/; RRID: SCR_017317

TIDE Brinkman et al., 2014 http://shinyapps.datacurators.nl/tide/

CRISPResso Clement et al., 2019 https://github.com/pinellolab/CRISPResso2
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Alice

Berger (ahberger@fredhutch.org).

Materials availability
The pgPEN CRISPR plasmid library has been deposited to Addgene as the Human Paralog Knockout Library (pgPEN), Addgene:

171172. All other plasmids and cell lines generated for this study will be shared by the lead contact upon request.

Data and code availability

d PC9-Cas9 andHeLa/iCas9 RNA-seq data (GEO:GSE120703) and raw and processedCRISPR screenGSE120703 sequencing

data for the PC9-Cas9 and HeLa/iCas9 pgPEN CRISPR screens (GEO: GSE178179) has been deposited to GEO. All GEO-

deposited data is listed in the Key resources table and is publicly available as of the date of publication. This paper also analyzes

existing, publicly available datasets. The accession numbers for these datasets are listed in the Key resources table. All other

data reported in this paper will be shared by the lead contact upon request.

d Original pgRNA counting code is publicly available (Zenodo: https://doi.org/10.5281/zenodo.5081113) as of the date of pub-

lication and is listed in the Key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

PC9 cells were originally derived from a metastatic lung adenocarcinoma from a 45 year old male patient. PC9-Cas9 cells were pre-

viously generated (Thomas et al., 2020) and cultured in RPMI-1640 (GIBCO) supplemented with 10% Fetal Bovine Serum (FBS,

Sigma). PC9-Cas9-GFP-NLS and PC9-Cas9-mCherry-NLS cells were generated by transducing PC9-Cas9 cells with lentivirus con-

taining GFP-NLS or mCherry-NLS-encoding vectors (parental backbone was a gift from Dider Trono, Addgene: 12252). mCherry or

GFP positive cells were selected using flow cytometry. HeLa cells were originally derived from a cervical carcinoma from a 31 year old

female patient. HeLa/iCas9 cells were previously generated (Cao et al., 2016) and cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM, Genesee Scientific) supplemented with 10% FBS. The HEK293T cell line was originally derived from kidney tissue from a

female fetus. HEK293T cells were obtained from ATCC (CRL-3216) and cultured in DMEM supplemented with 10% FBS. All cells

were maintained at 37�C in 5% CO2 and confirmed mycoplasma-free.

METHOD DETAILS

Human paralog analysis and selection
For analysis of human paralog versus singleton essentiality (Figures 1A and 1B), a list of human protein-coding genes was obtained

from Ensembl (Vilella et al., 2009). Mitochondrial genes and splice variants were removed from the analysis. The remaining genes

were divided into two groups: (1) paralogous genes with >10% amino acid sequence identity and (2) singleton genes.

For the pgPEN library, the list of human paralogs was further filtered to include only those with >50% reciprocal amino acid

sequence identity with only one other gene. Genes encoding components of olfactory signaling and T cell receptors were also

excluded. As shown in Figure S1A, a total of 2,060 paralogous genes (1,030 pairs) were included in the pgPEN library. Note that pa-

ralogs MEK1/MEK2 may also be referred to as MAP2K1/MAP2K2.

PC9 single-gene CRISPR screen
PC9-Cas9 and PC9-Cas9-EGFRT790M/L858R single-gene CRISPR knockout screen data was re-analyzed from previously published

data (Vichas et al., 2021). The relative essentiality of singletons versus paralogs in the PC9-Cas9 CRISPR knockout screen using the

Brunello library (Doench et al., 2016) was assessed via a two-tailed Kolmogorov-Smirnov test (Figure 1B).

PC9 drug sensitivity profiling
PC9-Cas9 and PC9-Cas9-EGFRT790M/L858R erlotinib/trametinib drug sensitivity data was re-analyzed from previously published data

(Berger et al., 2016). For combination dosing, erlotinib and trametinib were delivered to cells in a 1:1 molar ratio.

pgPEN library design and cloning
The pgPEN library was designed using sgRNA sequences selected from the Brunello library (Doench et al., 2016). sgRNAs containing

BsmBI restriction target sequences andU6 termination signalswere excluded from the library. Given that previous data demonstrated
e2 Cell Reports 36, 109597, August 31, 2021
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noposition effects using thepgRNAapproach (Gasperini et al., 2017), the sgRNA targeting agivengenewas located at the samesite in

every pgRNA.

pgRNA oligonucleotides were synthesized by Twist Biosciences and cloned per published protocols (Gasperini et al., 2017;

Thomas et al., 2020). Briefly, the pgRNA oligonucleotides were amplified (primers RKB1169 and RKB1170, Table S5) using NEBNext

High Fidelity 2X ReadyMix (New England Biolabs) and purified via a 1.8X Ampure XP SPRI bead (Beckman Coulter) clean-up. Ampli-

fied oligonucleotides were then cloned into BsmBI (FastDigest Esp3I, Thermo Fisher Scientific)-digested lentiGuide-Puro (Addgene:

52963) (Sanjana et al., 2014) plasmid backbone via the NEBuilder HiFi (New England Biolabs) assembly system. Cloned plasmids

were purified using a 0.8X Ampure bead clean-up and transformed into Endura ElectroCompetent E. coli cells (Lucigen) via electro-

poration to generate the pLGP-2xSpacer vector. The pLGP-2xSpacer vector was isolated using the NucleoBond Xtra Maxiprep kit

(Macherey-Nagel) and linearized by BsmBI digest. A GBlock (synthesized by Integrated DNA Technologies) containing a second

sgRNA backbone and H1 promoter sequence was digested with BsmBI, purified via a 1.8X Ampure bead clean-up, and ligated

into the pLGP-2xSpacer backbone using NEB Quick Ligase (New England Biolabs). The reaction product was purified using an

0.8X Ampure bead cleanup and transformed into Endura Electrocompetent E. coli via electroporation to propagate the final

pLGP-pgRNA vectors. The pLGP-pgRNA plasmids were again isolated using the NucleoBond Xtra Maxiprep kit, and the cloned li-

brary was amplified and sequenced as described below to confirm high coverage. At each cloning step, individual E. coli colonies

were sequence verified via colony PCR and Sanger sequencing with primer RKB1148 (Table S5). Over 1000X coverage of each

pgRNA was maintained throughout plasmid library cloning, amplification, and sequencing; coverage depth was selected based

on our previous screen experience as well as published recommendations (Doench, 2018; Joung et al., 2017).

Lentivirus production and titration
With our cloned library, we produced lentivirus via a large-format transfection in HEK293T cells using a protocol adapted from Joung

et al. (2017). Briefly, we used TransIT-LT1 (Mirus Bio) as a transfection reagent, with packaging plasmid psPAX2 (Addgene: 12260;

plasmid was a gift from Didier Trono) and envelope plasmid pCMV-VSV-G (Addgene: 8454) (Stewart et al., 2003) and Opti-MEM

(Thermo Fisher Scientific). Plasmids were added at a 4:2:1 ratio of transfer to packaging to envelope plasmid. At 18 hours post-trans-

fection, media was changed to high-serum DMEM (30% FBS). Lentivirus was harvested 48 hours post-transfection. Over 500X

coverage of each pgRNA was maintained throughout; coverage depth was selected based on our previous screen experience as

well as published recommendations (Doench, 2018; Joung et al., 2017).

pgPEN CRISPR screens
PC9-Cas9 andHeLa/iCas9 cells were transducedwith the pgPEN library at lowmultiplicity of infection (~0.3) to ensure the integration

of a single pgRNA construct into >95% of transduced cells (Doench, 2018). Transduced cells were then selected using puromycin

(1.0 mg/mL, Sigma) for 48-72 hours until all uninfected control cells were dead. For the PC9-Cas9 screen, cells were split into three

biological replicates after infection but before puromycin selection, and genomic DNA (gDNA) was harvested from each replicate af-

ter puromycin selection for an early time point sample. For the HeLa/iCas9 screen, cells were kept in the pooled format until puro-

mycin selection was complete, resulting in a single early time point sample. HeLa/iCas9 cells were then induced using doxycycline

(1.0 mg/mL, Sigma) and split into three biological replicates. For both screens, cells were then passaged for approximately 12 pop-

ulation doublings while maintaining over 500X coverage of each pgRNA at every step. An endpoint gDNA sample was harvested from

each biological replicate and stored at �80�C. Genomic DNA was extracted using the QIAamp DNA Blood Maxi Kit (QIAGEN).

pgPEN library preparation and sequencing
Plasmid and gDNA samples were amplified and sequenced at >500X coverage per pgRNA according to our previously established

methods (Thomas et al., 2020). All primer sequences used for library preparation are included in Table S5. First, 2.5 mg of gDNA was

used as input for each reaction, with a total of 48 reactions (120 mg total input gDNA) to ensure >500X coverage per sample. Input

DNA was amplified using NEBNext High Fidelity 2X Ready Mix with primers RKB2713/RKB2714 followed by 1.8X Ampure bead

clean-up. Second, the amplicon from PCR #1 was used as input for PCR #2, with 10 ng input DNA in one reaction per sample.

The input DNA was amplified using primers RKB2715/RKB2716 followed by 1X Ampure bead clean-up. Third, 10 ng of the amplicon

from PCR #2 was used as input for PCR #3 and was amplified using a common forward primer (RKB2717) and a sample-specific

barcoded reverse primer (see Table S5) to allow for multiplexed sequencing. Product from PCR #3 was purified using a 1X Ampure

bead clean-up, quantified by a Qubit assay (Thermo Fisher Scientific), and pooled at equimolar amounts prior to Illumina sequencing.

The custom sequencing strategy used for pgPEN is outlined in Figure S1D.

pgRNA cloning for validation
Validation pgRNA oligonucleotides consisted of two sgRNA sequences separated by the H1 promoter andwere synthesized byGen-

ewiz (Brooks Life Sciences). All pgRNA sequences used for validation experiments are available in Table S5. Each validation pgRNA

was cloned into a BsmBI-digested LentiGuide-Puro backbone using a one-step Gibson reaction using the NEBuilder HiFi (New En-

gland Biolabs) DNA assembly system, as described above for pgPEN library cloning. Cloned plasmids were transformed into One

Shot Stbl3 Chemically Competent E. coli (Invitrogen). Individual colonies were sequence verified via colony Sanger sequencing

with primer RKB1148 (Table S5), then the final pgRNA vector was isolated using the Plasmid Plus Midi Kit (QIAGEN).
Cell Reports 36, 109597, August 31, 2021 e3
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Competitive fitness assay
For the bichromatic competitive fitness assay, PC9-Cas9-GFP-NLS cells were transduced with a control pgRNA and PC9-Cas9-

mCherry-NLS cells with either a paralog single KO pgRNA or a paralog DKO pgRNA. After 48-72 hours of selection with puromycin

(1 mg/mL), cells were pooled at an equal ratio and seeded in tissue culture-treated plates (Corning). The day cells were pooled was

termed Day 0. For theMAGOH/MAGOHB paralog pair, non-targeting control (NTC) gRNAs were used as controls and each compe-

tition (double NTC versusMAGOH single KO, double NTC versusMAGOHB single KO, double NTC versusMAGOH/MAGOHBDKO)

was carried out in triplicate. For all other competitive fitness assays (CCNL1/CCNL2,CDK4/CDK6,MEK1/MEK2,OXSR1/STK39, and

PSMB5/PSMB8), safe-targeting gRNAs that target intergenic regions (Morgens et al., 2017) were used as controls to account for the

different number of double-strand breaks generated by single KO versus DKO pgRNAs and each competition was carried out in six

biological replicates. After pooling (Day 0), cells were imaged 24 hours later (Day 1) using a Cytation 5 imager (BioTek Instruments).

Raw counts of mCherry- andGFP-expressing cells were computed using Gen5 v3.02 software (BioTek Instruments) to determine the

initial paralog-targeting and safe-targeting pgRNA abundance. Cells were imaged and mCherry and GFP cell counts were taken

every 1-3 days.

Genomic DNA sequencing for validation
Genomic DNA was extracted from validation cell lines using the DNeasy Blood & Tissue Kit (QIAGEN). On-target editing efficiencies

for each gene target were determined via PCR and Sanger or next-generation sequencing. sgRNA target regions were amplified us-

ing NEBNExt High-Fidelity 2X PCR Master Mix (New England Biolabs) and custom primers designed for each target; primer se-

quences are available in Table S5. PCR products were then purified via Ampure bead clean-up and submitted for sequencing by

Genewiz. For Sanger sequencing, results were analyzed using the online tool Tracking of Indels by Deconvolution (TIDE, http://

shinyapps.datacurators.nl/tide/) which uses Sanger traces to approximate CRISPR editing efficiencies (Brinkman et al., 2014).

Next-generation sequencing results were mapped, aligned and CRISPR indels were quantified using the CRISPREsso v2 pipeline

(Clement et al., 2019).

Cell lysis and western blotting for validation
Whole-cell extracts for immunoblotting were prepared by incubating cells on a rocker at 4�C in RTK lysis buffer (20 mM Tris (pH 8.0),

2 mMEDTA (pH 8), 137mMNaCl, 1% IGEPAL CA-630, 10%Glycerol) plus Pierce protease and phosphatase inhibitors (Thermo Sci-

entific) for 20 minutes. Following centrifugation (> 15,000 x g for 20 minutes at 4�C), protein lysates were quantified using the Pierce

BCA Protein Assay Kit (Thermo Fisher Scientific). Lysates were separated by SDS–PAGE and transferred to PVDFmembranes using

the Trans-blot Turbo Transfer System (BioRad). Membranes were blocked in Intercept Blocking Buffer (LiCOR) with 0.1% Tween 20

Solution (BioRad) for 1 hour at room temperature followed by overnight incubation at 4�C with primary antibodies diluted in blocking

buffer. IRDye (LiCOR) secondary antibodies were used for detection and were imaged on Odyssey CLx Imaging system (LiCOR).

Loading control and experimental protein were probed on the same membrane in all cases. For clarity, loading control is cropped

and shown below experimental condition in all panels regardless of the relative molecular weights of the two proteins.

Primary antibodies used for western blotting: CCNL2 (Novus Biologicals #NB100-87009, 1:2000), MEK1 (Cell Signaling Technol-

ogy #2352, 1:1000), MEK2 (Cell Signaling Technology #9147, 1:1000), OXSR1 (alias OSR1, Cell Signaling Technology #3729, 1:1000),

STK39 (alias SPAK, Cell Signaling Technology #2281, 1:500), CDK4 (Cell Signaling Technology #12790, 1:1000), CDK6 (Cell Signaling

Technology #13331, 1:1000), vinculin (Sigma #V9264, 1:10,000).

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise noted, results were analyzed for statistical significance with Rv3.6.3 in an Rstudio v1.2.5 environment. Statistical

details of all experiments can be found below or in the corresponding figure legends.

pgPEN CRISPR screen sequencing analysis
Sequencing, image analysis, and base calling for pgPEN screens were performed on the Illumina HiSeq 2500 with RTA 1.18.66.3

software. FASTQ files were generated using Illumina’s bcl2fastq v2.20 conversion software. Reads were trimmed using FASTX-Tool-

kit v0.014, and samples were demultiplexed using idemp (https://github.com/yhwu/idemp). Sequencing reads for each pgRNAwere

mapped separately to the pgPEN library annotation using Bowtie v1.2.2 (Langmead et al., 2009). Aligned SAM files were converted to

BAM format and sorted using SAMtools v1.9 (Li et al., 2009). pgRNA counts were obtained using a custom R script with R v3.6.2 and

R packages Rsamtools v1.34.1 (accessed via Bioconductor v1.3.0; Huber et al., 2015) and Tidyverse v1.2.1 (Wickham et al., 2019).

Based on the reference set, correctly-paired pgRNAswere retainedwhile incorrectly-paired gRNAswere discarded. pgRNAswith < 2

reads per million (RPM) in the plasmid pool or with a read count of zero at any time point were also removed. The log2-scaled fold

change (LFC) of each pgRNAwas then computed using the MAGeCK v0.5.9.2 (Li et al., 2014) test command to compare initial abun-

dance in the plasmid pool to abundance at early and late time points.

LFC values were scaled so that the median of negative control (double non-targeting) pgRNAs was set to zero, while the median of

positive control (single-targeting pgRNAs targeting Project Achilles pan-essential genes; Meyers et al., 2017) pgRNAs was set to�1

(Figures 2B and S5D). We also used RNA-seq data from each cell line (Thomas et al., 2020) to control for growth defects caused by
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the double-strand break generation and repair process. To do this, we adjusted pgRNA LFCs so that the median LFC of single- and

double-targeting pgRNAs targeting unexpressed genes (TPM < 2) was set to zero (Figures 2C, S2D, S2E, and S5E–S5G). Finally, we

analyzed copy number effects using data from DepMap, accessed via Bioconductor v1.3.0 (Huber et al., 2015) package depmap

v1.0.0. We grouped pgRNAs by the combined copy number of targeted genes for each construct and analyzed the CRISPR scores

of each copy number group (Figures S2F–S2H and S5H–S5J). Given that the copy number of the vast majority of paralogs included in

our library was close to 2, we did not adjust for copy number effects. The scaled and normalized LFC for each pgRNA was termed a

CRISPR score (CS). Target-level CRISPR scoreswere calculated by taking themean across pgRNAswith the same single KO or DKO

paralog target. Final CRISPR scores were computed by taking the mean across the three biological replicates for each screen.

Genetic interaction score calculations
To compute a genetic interaction (GI) score for each paralog pair, we combined two previously published methods for genetic inter-

action mapping in human cells (DeWeirdt et al., 2021; Han et al., 2017). We first calculated an expected and observed CS for each

pgRNA. For DKO pgRNAs (pgRNA-Paralog1_Paralog2), we calculated the expected CS by first taking the mean CRISPR scores of

each single KO pgRNA with the same targeting sgRNA sequence paired with a non-targeting control (NTC) sgRNA sequence (i.e.,

mean(pgRNA-Paralog1_NTC1, pgRNA-Paralog1_NTC2) andmean(pgRNA-NTC1_Paralog2, pgRNA-NTC2_Paralog2)). We summed

these two single KO mean CS values to calculate an expected CS for each paralog pair, and compared this expected CS to the

observed DKO CS (pgRNA-Paralog1_Paralog2). To establish a distribution of non-interacting GI scores, we used single KO pgRNAs

as a negative control. We calculated an expected CS for single KOpgRNAs by computing the sumof (1) the CS for the other single KO

pgRNA containing the same targeting sgRNA sequence paired with a different NTC sgRNA sequence (pgRNA-Paralog1_NTC2) and

(2) the mean CS of double NTC pgRNAs (pgRNA-NTC1_NTC2) containing the same NTC sgRNA sequence (i.e., mean(pgRNA-

NTC1_NTC2, pgRNA-NTC1_NTC3)). This single KO expected CS was then compared to the observed single KO CS (pgRNA-Paral-

og1_NTC1 or pgRNA-NTC1_Paralog2). Target-level single KO and DKO expected and observed CRISPR scores were calculated by

taking the mean across pgRNAs.

We then obtained the distribution of CRISPR scores for control (single KO) pgRNAs by calculating the linear regression of control

expected versus observed CS values (Figure 3A for PC9 and Figure S5K for HeLa). GI scores were determined by calculating the

residual of each observed CS value for each paralog pair from the control regression line. Statistical significance of DKO GI scores

was determined using a t test compared to the distribution of control (single KO) GI scores. A Benjamini-Hochberg false discovery

rate (FDR) correction (Benjamini and Hochberg, 1995) was then applied, and FDR < 0.1 was considered significant.

Synthetic lethal paralogs were defined as those with a GI score < �0.5 and FDR < 0.1, while buffering paralogs were defined as

those with GI score > 0.25 and FDR < 0.1. Tumor suppressor paralogs were defined as buffering paralogs with an additional filter for

DKO CS > 0.25 in either PC9 or HeLa cells. Cancer deletion data for paralog tumor suppressor analysis shown in Figure 6E were

obtained from The Cancer Genome Atlas Copy Number Portal (Beroukhim et al., 2010).

Competitive fitness assay analysis
For each competition, the ratio of mCherry (targeting) to GFP (control) cells was computed for each sample replicate at each time

point. The log2-fold enrichment of pgRNAs relative to Day 1 was calculated by dividing each subsequent day’s mCherry:GFP ratio

by the Day 1 ratio. The expected DKO growth effect under a null model of no interaction was calculated by arbitrarily pairing single

KO target (i.e., Gene1_Safe and Gene2_Safe) replicates to calculate the sum of single KO growth effects. For each paralog-targeting

pgRNA and for the previously calculated expected (single KO sum) growth phenotypes, the mean and standard error of the mean

(SEM) of across replicates were calculated at each time point. Failed replicates were excluded from the analysis. The expected

growth effect was compared to the observed DKO growth effects using a one-tailed t test (Figures 4A, S3E–S3H, S3K, and S3L).

DepMap validation analysis
For each paralog pair, we determined the effect of CRISPR-mediated knockout of one gene in cell lines with high (top quartile)

compared to low (bottom quartile) expression or copy number of its paralogous gene (Figures 5E–5G). CRISPR score, expression,

and copy number data was obtained from DepMap via the Bionconductor package depmap v1.0.0. We compared the effect of pa-

ralog 1 knockout in paralog 2 low versus high cell lines using a two-tailed Wilcoxon Rank-Sum test.
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